FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM

被引:247
作者
FEIG, E
WINOGRAD, S
机构
[1] IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, NY
关键词
D O I
10.1109/78.157218
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce several fast algorithms for computing discrete cosine transforms (DCT's) and their inverses on multidimensional inputs of sizes which are powers of 2. Because the one-dimensional 8-point DCT and the two-dimensional 8 x 8-point DCT are so widely used, we discuss them in detail. We also present algorithms for computing scaled DCT's and their inverses; these have applications in compression of continuous tone image data, where the DCT is generally followed by scaling and quantization.
引用
收藏
页码:2174 / 2193
页数:20
相关论文
共 29 条
[21]  
Rao K.R., 1990, DISCRETE COSINE TRAN, DOI 10.1016/B978-0-08-092534-9.50007-2
[22]   DISCRETE COSINE TRANSFORM - COMMENTS [J].
SHANMUGAM, KS .
IEEE TRANSACTIONS ON COMPUTERS, 1975, C 24 (07) :759-759
[23]   FAST ALGORITHMS FOR THE DFT AND OTHER SINUSOIDAL TRANSFORMS [J].
SUEHIRO, N ;
HATORI, M .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (03) :642-644
[24]  
TSENG BD, 1978, IEEE T COMPUT, V27, P966, DOI 10.1109/TC.1978.1674977
[25]  
VETTERLI M, 1985, 1985 P ICASSP 85 TAM
[26]  
VETTERLI M, 1984, SIGNAL PROCESSING
[27]   MULTIPLICATIVE COMPLEXITY OF THE DISCRETE FOURIER-TRANSFORM [J].
WINOGRAD, S .
ADVANCES IN MATHEMATICS, 1979, 32 (02) :83-117
[28]  
WINOGRAD S, 1978, MATH COMPUT, V32, P175, DOI 10.1090/S0025-5718-1978-0468306-4
[29]  
Winograd S, 1980, ARITHMETIC COMPLEXIT, V33