ALGORITHMS FOR CARDINAL INTERPOLATION USING BOX SPLINES AND RADIAL BASIS FUNCTIONS

被引:11
作者
JETTER, K
STOCKLER, J
机构
[1] FB Mathematik, Universität Duisburg, Duisburg, W-4100
关键词
D O I
10.1007/BF01385716
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe an algorithm for (bivariate) cardinal interpolation which can be applied to translates of "basis functions" which include box splines or radial basis functions. The algorithm is based on a representation of the Fourier transform of the fundamental interpolant, hence Fast Fourier Transform methods are available. In numerical tests the 4-directional box spline (transformed to the characteristical submodule of Z2), the thin plate spline, and the multiquadric case give comparably equal and good results.
引用
收藏
页码:97 / 114
页数:18
相关论文
共 18 条
[1]  
BUHMANN MD, 1988, ALGORITHMS APPROXIMA, V2, P146
[2]  
Chui C.K, 1988, MULTIVARIATE SPLINES, V54
[3]   INVERTIBILITY OF SHIFTED BOX SPLINE INTERPOLATION OPERATORS [J].
CHUI, CK ;
STOCKLER, J ;
WARD, JD .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (02) :543-553
[4]  
CHUI CK, IN PRESS MATH COMPUT
[5]   BIVARIATE CARDINAL INTERPOLATION BY SPLINES ON A 3-DIRECTION MESH [J].
DEBOOR, C ;
HOLLIG, K ;
RIEMENSCHNEIDER, S .
ILLINOIS JOURNAL OF MATHEMATICS, 1985, 29 (04) :533-566
[6]  
DYN N, 1989, APPROXIMATION THEORY, V6, P211
[7]   SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS [J].
FRANKE, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :181-200
[8]  
Hollig K., 1986, APPROXIMATION THEORY, VV, P71
[9]   CARDINAL INTERPOLATION, SUBMODULES AND THE 4-DIRECTION MESH [J].
JETTER, K ;
RIEMENSCHNEIDER, S .
CONSTRUCTIVE APPROXIMATION, 1987, 3 (02) :169-188
[10]   SCHOENBERG EXPONENTIAL EULER SPLINE CURVES [J].
JETTER, K ;
RIEMENSCHNEIDER, SD ;
SIVAKUMAR, N .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 118 :21-33