NONDIMENSIONAL TRANSPORT SCALING IN THE TOKAMAK FUSION TEST REACTOR - IS TOKAMAK TRANSPORT BOHM OR GYRO-BOHM

被引:125
作者
PERKINS, FW [1 ]
BARNES, CW [1 ]
JOHNSON, DW [1 ]
SCOTT, SD [1 ]
ZARNSTORFF, MC [1 ]
BELL, MG [1 ]
BELL, RE [1 ]
BUSH, CE [1 ]
GREK, B [1 ]
HILL, KW [1 ]
MANSFIELD, DK [1 ]
PARK, H [1 ]
RAMSEY, AT [1 ]
SCHIVELL, J [1 ]
STRATTON, BC [1 ]
SYNAKOWSKI, E [1 ]
机构
[1] LOS ALAMOS NATL LAB,LOS ALAMOS,NM 87545
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1993年 / 5卷 / 02期
关键词
D O I
10.1063/1.860534
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
General plasma physics principles state that power flow Q(r) through a magnetic surface in a tokamak should scale as Q(r) = {32pi2Rr3T(e)2c n(e)a/[eB(a2 - r2)2]} F(rho*,beta,nu*,r/a,q,s,r/R,...) where the arguments of F are local, nondimensional plasma parameters and nondimensional gradients. This paper reports an experimental determination of how F varies with normalized gyroradius rho* = (2T(e)M(i)1/2c/eBa and collisionality nu* = (R/r)3/2qRnu(e)(m(e)/2T(e))1/2 for discharges prepared so that other nondimensional parameters remain close to constant. Tokamak Fusion Test Reactor (TFTR) [D. M. Meade et al., in Plasma Physics and Controlled Nuclear Fusion Research, 1990, Proceedings of the 13th International Conference, Washington (International Atomic Energy Agency, Vienna, 1991), Vol. 1, p. 9] L-mode data show F to be independent of rho* and numerically small, corresponding to Bohm scaling with a small multiplicative constant. By contrast, most theories predict gyro-Bohm scaling: F is-proportional-to rho*. Bohm scaling implies that the largest scale size for microinstability turbulence depends on machine size. Analysis of a collisionality scan finds Bohm-normalized power flow to be independent of collisionality. Implications for future theory, experiment, and reactor extrapolations are discussed.
引用
收藏
页码:477 / 498
页数:22
相关论文
共 69 条
[1]  
BARNES C, 1992, COMMUNICATION
[2]   THE MULTIPLE FACETS OF OHMIC CONFINEMENT IN ASDEX [J].
BESSENRODTWEBERPALS, M ;
MCCORMICK, K ;
SOLDNER, FX ;
WAGNER, F ;
BOSCH, HS ;
GEHRE, O ;
MULLER, ER ;
MURMANN, HD ;
NEUHAUSER, J ;
POSCHENRIEDER, W ;
STEUER, KH ;
TSOIS, N .
NUCLEAR FUSION, 1991, 31 (01) :155-170
[3]   TOROIDAL ION-PRESSURE-GRADIENT-DRIVEN DRIFT INSTABILITIES AND TRANSPORT REVISITED [J].
BIGLARI, H ;
DIAMOND, PH ;
ROSENBLUTH, MN .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (01) :109-118
[4]   THEORY OF HYDRODYNAMIC TRAPPED-ION-TEMPERATURE-GRADIENT-DRIVEN TURBULENCE [J].
BIGLARI, H ;
DIAMOND, PH .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (08) :1797-1800
[5]  
BOL K, 1979, PLASMA PHYS CONTROLL, V1, P11
[6]  
Book DL., 1987, NRL PLASMA FORMULARY
[7]  
BRETZ NL, 1990, 17TH P EUR C CONTR F, V4, P1544
[8]   DRIFT-WAVE EIGENMODES IN TOROIDAL PLASMAS [J].
CHEN, L ;
CHENG, CZ .
PHYSICS OF FLUIDS, 1980, 23 (11) :2242-2249
[9]   APPLICATION OF PLASMA PHYSICS CONSTRAINTS TO CONFINEMENT DATA [J].
CHRISTIANSEN, JP ;
CORDEY, JG ;
KARDAUN, OJWF ;
THOMSEN, K .
NUCLEAR FUSION, 1991, 31 (11) :2117-2129
[10]   TRANSPORT DUE TO ION PRESSURE-GRADIENT TURBULENCE [J].
CONNOR, JW .
NUCLEAR FUSION, 1986, 26 (02) :193-199