NONDIMENSIONAL TRANSPORT SCALING IN THE TOKAMAK FUSION TEST REACTOR - IS TOKAMAK TRANSPORT BOHM OR GYRO-BOHM

被引:125
作者
PERKINS, FW [1 ]
BARNES, CW [1 ]
JOHNSON, DW [1 ]
SCOTT, SD [1 ]
ZARNSTORFF, MC [1 ]
BELL, MG [1 ]
BELL, RE [1 ]
BUSH, CE [1 ]
GREK, B [1 ]
HILL, KW [1 ]
MANSFIELD, DK [1 ]
PARK, H [1 ]
RAMSEY, AT [1 ]
SCHIVELL, J [1 ]
STRATTON, BC [1 ]
SYNAKOWSKI, E [1 ]
机构
[1] LOS ALAMOS NATL LAB,LOS ALAMOS,NM 87545
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1993年 / 5卷 / 02期
关键词
D O I
10.1063/1.860534
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
General plasma physics principles state that power flow Q(r) through a magnetic surface in a tokamak should scale as Q(r) = {32pi2Rr3T(e)2c n(e)a/[eB(a2 - r2)2]} F(rho*,beta,nu*,r/a,q,s,r/R,...) where the arguments of F are local, nondimensional plasma parameters and nondimensional gradients. This paper reports an experimental determination of how F varies with normalized gyroradius rho* = (2T(e)M(i)1/2c/eBa and collisionality nu* = (R/r)3/2qRnu(e)(m(e)/2T(e))1/2 for discharges prepared so that other nondimensional parameters remain close to constant. Tokamak Fusion Test Reactor (TFTR) [D. M. Meade et al., in Plasma Physics and Controlled Nuclear Fusion Research, 1990, Proceedings of the 13th International Conference, Washington (International Atomic Energy Agency, Vienna, 1991), Vol. 1, p. 9] L-mode data show F to be independent of rho* and numerically small, corresponding to Bohm scaling with a small multiplicative constant. By contrast, most theories predict gyro-Bohm scaling: F is-proportional-to rho*. Bohm scaling implies that the largest scale size for microinstability turbulence depends on machine size. Analysis of a collisionality scan finds Bohm-normalized power flow to be independent of collisionality. Implications for future theory, experiment, and reactor extrapolations are discussed.
引用
收藏
页码:477 / 498
页数:22
相关论文
共 69 条
[11]  
CORDEY JG, 1987, PLASMA PHYS CONTROLL, V1, P99
[12]   SCALING OF DENSITY-FLUCTUATIONS IN PDX [J].
CROWLEY, T ;
MAZZUCATO, E .
NUCLEAR FUSION, 1985, 25 (05) :507-523
[13]  
DEBOO J, 1991, 18TH P EUR C CONTR F, V1, P173
[14]   THEORY OF DISSIPATIVE TRAPPED-ION CONVECTIVE-CELL TURBULENCE [J].
DIAMOND, PH ;
BIGLARI, H .
PHYSICAL REVIEW LETTERS, 1990, 65 (23) :2865-2868
[15]   TOKAMAK TRANSPORT CODE SIMULATIONS WITH DRIFT WAVE MODELS [J].
DOMINGUEZ, RR ;
WALTZ, RE .
NUCLEAR FUSION, 1987, 27 (01) :65-79
[16]   ION TEMPERATURE-GRADIENT MODE IN THE WEAK DENSITY GRADIENT LIMIT [J].
DOMINGUEZ, RR ;
WALTZ, RE .
PHYSICS OF FLUIDS, 1988, 31 (10) :3147-3150
[17]  
FAIRFAX S, 1979, PLASMA PHYS CONTROLL, V1, P439
[18]   DETERMINATION OF PLASMA-ION VELOCITY DISTRIBUTION VIA CHARGE-EXCHANGE RECOMBINATION SPECTROSCOPY [J].
FONCK, RJ ;
DARROW, DS ;
JAEHNIG, KP .
PHYSICAL REVIEW A, 1984, 29 (06) :3288-3309
[19]  
FONCK RJ, 1991, 18TH P EUR PHYS SOC, V1, P269
[20]   NON-LINEAR GYROKINETIC EQUATIONS FOR LOW-FREQUENCY ELECTROMAGNETIC-WAVES IN GENERAL PLASMA EQUILIBRIA [J].
FRIEMAN, EA ;
CHEN, L .
PHYSICS OF FLUIDS, 1982, 25 (03) :502-508