THE SPRAY CONTRIBUTION TO NET EVAPORATION FROM THE SEA - A REVIEW OF RECENT PROGRESS

被引:201
作者
ANDREAS, EL
EDSON, JB
MONAHAN, EC
ROUAULT, MP
SMITH, SD
机构
[1] WOODS HOLE OCEANOG INST, DEPT APPL OCEAN PHYS, WOODS HOLE, MA 02543 USA
[2] UNIV CONNECTICUT, DEPT MARINE SCI, GROTON, CT 06340 USA
[3] UNIV CAPE TOWN, DEPT OCEANOG, RONDEBOSCH 7700, SOUTH AFRICA
[4] FISHERIES & OCEANS CANADA, BEDFORD INST OCEANOG, DARTMOUTH, NS B2Y 4A2, CANADA
关键词
D O I
10.1007/BF00712389
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The part that sea spray plays in the air-sea transfer of heat and moisture has been a controversial question for the last two decades, With general circulation models (GCMs) suggesting that perturbations in the Earth's surface heat budget of only a few W m(-2) can initiate major climatic variations, it is crucial that we identify and quantify all the terms in that heat budget. Thus, here we review recent work on how sea spray contributes to the sea surface heat and moisture budgets. In the presence of spray, the near-surface atmosphere is characterized by a droplet evaporation layer (DEL) with a height that scales with the significant-wave amplitude. The majority of spray transfer processes occur within this layer. As a result, the DEL is cooler and more moist than the atmospheric surface layer would be under identical conditions but without the spray. Also, because the spray in the DEL provides elevated sources and sinks for heat and moisture, the vertical heat fluxes are no longer constant with height. We use Eulerian and Lagrangian models and a simple analytical model to study the processes important in spray droplet dispersion and evaporation within this DEL. These models all point to the conclusion that, in high winds (above about 15 mis), sea spray begins to contribute significantly to the air-sea fluxes of heat and moisture. For example, we estimate that, in a 20-m/s wind, with an air temperature of 20 degrees C, a sea surface temperature of 22 degrees C, and a relative humidity of 80%, the latent and sensible heat fluxes resulting from the spray alone will have magnitudes of order 150 and 15 W/m(2), respectively, in the DEL. Finally, we speculate on what fraction of these fluxes rise out of the DEL and, thus, become available to the entire marine boundary layer.
引用
收藏
页码:3 / 52
页数:50
相关论文
共 154 条
[21]   BUBBLE AND AEROSOL SPECTRA PRODUCED BY A LABORATORY BREAKING WAVE [J].
CIPRIANO, RJ ;
BLANCHARD, DC .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1981, 86 (NC9) :8085-8092
[22]  
DAVIDSON KL, 1986, SPIE, V637, P18
[23]  
De Leeuw G., 1986, Tellus, Series B (Chemical and Physical Meteorology), V38B, P51, DOI 10.1111/j.1600-0889.1986.tb00087.x
[24]  
DECOSMO J, 1994, UNPUB J GEOPHYS RES
[25]  
DECOSMO J, 1991, THESIS U WASHINGTON
[26]   VERTICAL DISTRIBUTIONS OF SPRAY DROPLETS NEAR THE SEA-SURFACE - INFLUENCES OF JET DROP EJECTION AND SURFACE TEARING - COMMENT [J].
DELEEUW, G .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1990, 95 (C6) :9779-9782
[27]   SIZE DISTRIBUTIONS OF GIANT AEROSOL-PARTICLES CLOSE ABOVE SEA-LEVEL [J].
DELEEUW, G .
JOURNAL OF AEROSOL SCIENCE, 1986, 17 (03) :293-296
[28]   NEAR-SURFACE PARTICLE-SIZE DISTRIBUTION PROFILES OVER THE NORTH-SEA [J].
DELEEUW, G .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1987, 92 (C13) :14631-14635
[29]  
DELEEUW G, 1990, TELLUS B, V42, P342, DOI 10.1034/j.1600-0889.1990.t01-2-00004.x
[30]  
DELEEUW G, 1990, MODELING FATE INFLUE, P17