EXTENSION OF A MOMENT-PROBLEM MINIMAX QUANTIZATION PROCEDURE TO ANHARMONIC POTENTIALS

被引:6
作者
HANDY, CR [1 ]
机构
[1] CLARK ATLANTA UNIV, CTR THEORET STUDIES PHYS SYST, ATLANTA, GA 30314 USA
来源
PHYSICAL REVIEW A | 1995年 / 52卷 / 05期
关键词
D O I
10.1103/PhysRevA.52.3468
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, Handy, Appiah, and Bessis (HAB) [Phys. Rev. A 50, 988 (1994)] showed that the local maxima in the energy variable E of the function V(E)=max(u)min(sigma)lambda(E)(sigma)[(u) over right arrow] (where lambda(E)(sigma)[(u) over right arrow] are the smallest eigenvalues of modified Hankel moment matrices) approximate the discrete energy states of Schrodinger Hamiltonians. Their theoretical result was demonstrated by way of two zero-missing-moment problems, the harmonic oscillator and the x(2) + lambda[x(2)/(1 + gx(2))] potentials, for which the corresponding eigenvalue functions lambda(E)(sigma) are solely energy dependent. We examine the general n-missing-moment problem through an application of gradient optimization techniques that are suitable for piecewise differentiable functions, thereby enabling us to test HAB's results for anharmonic potentials of-missing-moment order 1, 2, and 3, corresponding to the quartic, sextic, and octic anharmonic potentials, respectively.
引用
收藏
页码:3468 / 3473
页数:6
相关论文
共 18 条
[1]  
Akhiezer N., 1965, CLASSICAL MOMENT PRO
[2]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[3]   EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS [J].
BISWAS, SN ;
DATTA, K ;
SAXENA, RP ;
SRIVASTAVA, PK ;
VARMA, VS .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1190-1195
[4]   MOMENT METHOD FOR EIGENVALUES AND EXPECTATION VALUES [J].
BLANKENBECLER, R ;
DEGRAND, T ;
SUGAR, RL .
PHYSICAL REVIEW D, 1980, 21 (04) :1055-1061
[5]  
Chvatal V, 1983, LINEAR PROGRAMMING
[6]   MOMENT-PROBLEM FORMULATION OF A MINIMAX QUANTIZATION PROCEDURE [J].
HANDY, CR ;
APPIAH, K ;
BESSIS, D .
PHYSICAL REVIEW A, 1994, 50 (02) :988-996
[7]   MOMENT-METHOD QUANTIZATION OF A LINEAR-DIFFERENTIAL EIGENVALUE EQUATION FOR [PSI]2 [J].
HANDY, CR .
PHYSICAL REVIEW A, 1987, 36 (09) :4411-4416
[8]   NONNEGATIVITY AND MOMENT QUANTIZATION FOR (PSI)2 [J].
HANDY, CR .
PHYSICS LETTERS A, 1987, 124 (6-7) :308-312
[9]   GENERATING QUANTUM ENERGY BOUNDS BY THE MOMENT METHOD - A LINEAR-PROGRAMMING APPROACH [J].
HANDY, CR ;
BESSIS, D ;
MORLEY, TD .
PHYSICAL REVIEW A, 1988, 37 (12) :4557-4569
[10]   RAPIDLY CONVERGENT LOWER BOUNDS FOR THE SCHRODINGER-EQUATION GROUND-STATE ENERGY [J].
HANDY, CR ;
BESSIS, D .
PHYSICAL REVIEW LETTERS, 1985, 55 (09) :931-934