INTERPLAY BETWEEN PASSIVE TENSION AND STRONG AND WEAK BINDING CROSS-BRIDGES IN INSECT INDIRECT FLIGHT-MUSCLE - A FUNCTIONAL DISSECTION BY GELSOLIN-MEDIATED THIN FILAMENT REMOVAL

被引:81
作者
GRANZIER, HLM [1 ]
WANG, K [1 ]
机构
[1] UNIV TEXAS, CLAYTON FDN BIOCHEM INST, DEPT CHEM & BIOCHEM, AUSTIN, TX 78712 USA
关键词
D O I
10.1085/jgp.101.2.235
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The interplay between passive and active mechanical properties of indirect flight muscle of the waterbug (Lethocerus) was investigated. A functional dissection of the relative contribution of cross-bridges, actin filaments, and C filaments to tension and stiffness of passive, activated, and rigor fibers was carried out by comparing mechanical properties at different ionic strengths of sarcomeres with and without thin filaments. Selective thin filament removal was accomplished by treatment with the actin-severing protein gelsolin. Thin filament removal had no effect on passive tension, indicating that the C filament and the actin filament are mechanically independent and that passive tension is developed by the C filament in response to sarcomere stretch. Passive tension increased steeply with sarcomere length until an elastic limit was reached at only 6-7% sarcomere extension, which corresponds to an extension of 350% of the C filament. The passive tension-length relation of insect flight muscle was analyzed using a segmental extension model of passive tension development (Wang, K., R. McCarter, J. Wright, B. Jennate, and R. Ramirez-Mitchell. 1991. Proc. Natl. Acad. Sci. USA. 88:7101-7109). Thin filament removal greatly depressed high frequency passive stiffness (2.2 kHz) and eliminated the ionic strength sensitivity of passive stiffness. It is likely that the passive stiffness component that is removed by gelsolin is derived from weak-binding cross-bridges, while the component that remains is derived from the C filament. Our results indicate that a significant number of weak-binding cross-bridges exist in passive insect muscle at room temperature and at an ionic strength of 195 mM. Analysis of rigor muscle indicated that while rigor tension is entirely actin based, rigor stiffness contains a component that resists gelsolin treatment and is therefore likely to be C filament based. Active tension and active stiffness of unextracted fibers were directly proportional to passive tension before activation. Similarly, passive stiffness due to weak bridges also increased linearly with passive tension, up to a limit. These correlations lead us to propose a stress-activation model for insect flight muscle in which passive tension is a prerequisite for the formation of both weak-binding and strong-binding cross-bridges.
引用
收藏
页码:235 / 270
页数:36
相关论文
共 51 条
[31]  
PRINGLE J. W. S., 1965, P283
[32]   CROONIAN LECTURE, 1977 - STRETCH ACTIVATION OF MUSCLE - FUNCTION AND MECHANISM [J].
PRINGLE, JWS .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1978, 201 (1143) :107-+
[33]   THICK MYOFILAMENT MASS DETERMINATION BY ELECTRON-SCATTERING MEASUREMENTS WITH THE SCANNING-TRANSMISSION ELECTRON-MICROSCOPE [J].
REEDY, MK ;
LEONARD, KR ;
FREEMAN, R ;
ARAD, T .
JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, 1981, 2 (01) :45-64
[34]  
REEDY MK, 1971, S CONTRACTILITY, P229
[36]  
SOBUE K, 1991, J BIOL CHEM, V266, P12115
[37]  
SOMERVILLE L, 1981, BIOCHEM BIOPH RES CO, V102, P52
[38]   MUSCLE FILAMENT LATTICES AND STRETCH-ACTIVATION - THE MATCH MISMATCH MODEL REASSESSED [J].
SQUIRE, JM .
JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, 1992, 13 (02) :183-189
[39]  
SQUIRE JM, 1986, MUSCLE DESIGN DIVERS, P159
[40]  
SQUIRE JM, 1981, STRUCTURAL BASIS MUS, P403