STRANGE NONCHAOTIC ATTRACTOR IN A QUASI-PERIODICALLY FORCED CIRCLE MAP

被引:129
作者
FEUDEL, U
KURTHS, J
PIKOVSKY, AS
机构
[1] Max-Planck-Arbeitsgruppe Nichtlineare Dynamik, Universität Potsdam, Potsdam
来源
PHYSICA D | 1995年 / 88卷 / 3-4期
关键词
D O I
10.1016/0167-2789(95)00205-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that in the quasiperiodically forced circle map strange non-chaotic attractors can appear for non-linearities far from the border of chaos. The destruction of a two-frequency quasiperiodic torus connected with the appearance of a strange non-chaotic attractor is described in detail. This strange non-chaotic attractor is characterized by logarithmically slow diffusion of the phase. It is shown that in this regime the high-order phase-locking states disappear and the rotation number varies rather smoothly with the parameters.
引用
收藏
页码:176 / 186
页数:11
相关论文
共 31 条
[1]  
[Anonymous], 1993, STAT PHYS
[2]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[3]   MODE-LOCKING AND THE TRANSITION TO CHAOS IN DISSIPATIVE SYSTEMS [J].
BAK, P ;
BOHR, T ;
JENSEN, MH .
PHYSICA SCRIPTA, 1985, T9 :50-58
[4]   QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE [J].
BONDESON, A ;
OTT, E ;
ANTONSEN, TM .
PHYSICAL REVIEW LETTERS, 1985, 55 (20) :2103-2106
[5]   MIXED SPECTRA AND ROTATIONAL SYMMETRY [J].
BROER, H ;
TAKENS, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (01) :13-42
[6]   LOCATING BIFURCATIONS IN QUASI-PERIODICALLY FORCED SYSTEMS [J].
CHASTELL, PR ;
GLENDINNING, PA ;
STARK, J .
PHYSICS LETTERS A, 1995, 200 (01) :17-26
[7]   DIMENSIONS OF STRANGE NONCHAOTIC ATTRACTORS [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICS LETTERS A, 1989, 137 (4-5) :167-172
[8]   EVOLUTION OF ATTRACTORS IN QUASIPERIODICALLY FORCED SYSTEMS - FROM QUASIPERIODIC TO STRANGE NONCHAOTIC TO CHAOTIC [J].
DING, MZ ;
GREBOGI, C ;
OTT, E .
PHYSICAL REVIEW A, 1989, 39 (05) :2593-2598
[9]   PHASE-RESETTING MAP AND THE DYNAMICS OF QUASI-PERIODICALLY FORCED BIOLOGICAL OSCILLATORS [J].
DING, MZ ;
KELSO, JAS .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (03) :553-567
[10]   EXPERIMENTAL-OBSERVATION OF A STRANGE NONCHAOTIC ATTRACTOR [J].
DITTO, WL ;
SPANO, ML ;
SAVAGE, HT ;
RAUSEO, SN ;
HEAGY, J ;
OTT, E .
PHYSICAL REVIEW LETTERS, 1990, 65 (05) :533-536