SPECTRAL COLLOCATION METHODS AND POLAR COORDINATE SINGULARITIES

被引:40
作者
EISEN, H
HEINRICHS, W
WITSCH, K
机构
[1] Heinrich-Heine-Universität Dü, D-4000 Düsseldorf 1
关键词
D O I
10.1016/0021-9991(91)90235-D
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper considers the numerical solution of elliptic differential equations on the unit disk. Using polar coordinates, the disk is mapped onto a rectangle. The resulting transformed problem is solved by a method related to collocation. Since the origin is a coordinate singularity, some natural trial functions are singular there and a special technique is applied to use zero as a collocation point. For Poisson and Helmholtz equations, a fast algorithm with an operation count of O(N2 log N) is presented. Numerical results show the different stability and convergence properties of the algorithms. © 1991.
引用
收藏
页码:241 / 257
页数:17
相关论文
共 15 条
[1]  
BOYD JP, 1978, MON WEATHER REV, V106, P1184, DOI 10.1175/1520-0493(1978)106<1184:TCOSFO>2.0.CO
[2]  
2
[3]  
Canuto C., 2012, SPECTRAL METHODS EVO
[4]  
EISEN H, 1988, UNPUB SPEKTRALE VERF
[5]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[6]  
GOTTLIEB D, 1977, CBMS REGIONAL C SERI, V104
[7]   LINE RELAXATION FOR SPECTRAL MULTIGRID METHODS [J].
HEINRICHS, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 77 (01) :166-182
[8]  
HEINRICHS W, 1989, MATH COMPUT, V53, P103, DOI 10.1090/S0025-5718-1989-0972370-0
[9]   MULTIGRID METHODS FOR COMBINED FINITE-DIFFERENCE AND FOURIER PROBLEMS [J].
HEINRICHS, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 78 (02) :424-436
[10]  
HEINRICHS W, 1987, GMD168 BER