EXACT PROPAGATOR FOR A 2-DIMENSIONAL INVERSE QUADRATIC OSCILLATOR INTERACTING WITH A WEDGE

被引:6
作者
CHENG, BK
DALUZ, MGE
机构
[1] Dept. de Fisica, Univ., Federal Do Paraana, Curitiba
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 07期
关键词
D O I
10.1088/0305-4470/25/7/039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact propagator of our dynamic system is derived for a rational wedge. For an irrational wedge, the proposed propagator can be confirmed by expanding it in terms of eigenfunctions and eigenvalues, which agree with those obtained from the corresponding Schrodinger equation. Our results are also valid for an inverse square potential interacting with a wedge. Finally we investigate the classical path's contributions to the propagator for the free particle and the rational wedge case.
引用
收藏
页码:2033 / 2042
页数:10
相关论文
共 17 条
[1]  
[Anonymous], 1996, TABLES INTEGRALS SER
[2]   PATH-INTEGRALS WITH A PERIODIC CONSTRAINT - THE AHARONOV-BOHM EFFECT [J].
BERNIDO, CC ;
INOMATA, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (04) :715-718
[3]   PATH-INTEGRAL EVALUATION OF A NEW TIME-DEPENDENT PROPAGATOR [J].
CHENG, BK .
PHYSICS LETTERS A, 1989, 135 (02) :70-76
[4]   THE 2-DIMENSIONAL HARMONIC-OSCILLATOR INTERACTING WITH A WEDGE [J].
CHENG, BK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24) :5807-5814
[5]  
CHENG BK, 1989, PATH INTEGRALS MEV M, P370
[6]   PATH INTEGRAL SOLUTION FOR A PARTICLE CONFINED IN A REGION [J].
CHETOUANI, L ;
CHOUCHAOUI, A ;
HAMMANN, TF .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (04) :838-841
[7]   EXACT PROPAGATOR FOR MOTION CONFINED TO A SECTOR [J].
CRANDALL, RE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (03) :513-519
[8]  
DEWITTMORETTE C, 1982, F PHYS, V16, P311
[9]  
FLUGGE S, 1974, PRACTICAL QUANTUM ME, P108
[10]   FEYNMAN PATH-INTEGRAL APPROACH TO THE AHARONOV-BOHM EFFECT [J].
GERRY, CC ;
SINGH, VA .
PHYSICAL REVIEW D, 1979, 20 (10) :2550-2554