MODULATIONAL INSTABILITIES IN THE DISCRETE DEFORMABLE NONLINEAR SCHRODINGER-EQUATION

被引:68
作者
KIVSHAR, YS [1 ]
SALERNO, M [1 ]
机构
[1] UNIV SALERNO,DEPT THEORET PHYS,I-84100 SALERNO,ITALY
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 04期
关键词
D O I
10.1103/PhysRevE.49.3543
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study analytically and numerically modulational instability for the discrete deformable nonlinear Schrodinger (NLS) equation which represents a natural link between the properties of the integrable Ablowitz-Ladik model and the nonintegrable discrete NLS equation. We show how different discretizations of the nonlinear interaction change modulational instability in the lattice and, correspondingly, conditions for localized modes to exist.
引用
收藏
页码:3543 / 3546
页数:4
相关论文
共 25 条
[21]   QUANTUM DEFORMATIONS OF THE DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
SALERNO, M .
PHYSICAL REVIEW A, 1992, 46 (11) :6856-6859
[22]  
SCOTT AC, 1992, PHYS REP, V123, P1
[23]   NONLINEAR SELF-MODULATION - AN EXACTLY SOLVABLE MODEL [J].
TRACY, ER ;
CHEN, HH .
PHYSICAL REVIEW A, 1988, 37 (03) :815-839
[24]  
YUEN HC, 1978, PHYS FLUIDS, V21, P1275, DOI 10.1063/1.862394
[25]   NONLINEAR TRANSPORT OF VIBRATIONAL-ENERGY IN A RANDOM MOLECULAR CHAIN [J].
ZOLOTARYUK, AV ;
SPATSCHEK, KH ;
KLUTH, O .
PHYSICAL REVIEW B, 1993, 47 (13) :7827-7839