PERTURBATION-THEORY IN HIGH-ORDER FOR GENERALIZED CHARMONIUM POTENTIALS

被引:15
作者
VRSCAY, ER
机构
关键词
D O I
10.1103/PhysRevLett.53.2521
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2521 / 2524
页数:4
相关论文
共 24 条
[11]   CHARMONIUM - MODEL [J].
EICHTEN, E ;
GOTTFRIED, K ;
KINOSHITA, T ;
LANE, KD ;
YAN, TM .
PHYSICAL REVIEW D, 1978, 17 (11) :3090-3717
[12]   THE MATHEMATICAL-THEORY OF RESONANCES WHOSE WIDTHS ARE EXPONENTIALLY SMALL [J].
HARRELL, E ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1980, 47 (04) :845-902
[13]  
HENRICI P, 1977, APPLIED COMPUTATIONA, V2
[14]   ON A CONNECTION BETWEEN RADIAL SCHRODINGER-EQUATIONS FOR DIFFERENT POWER-LAW POTENTIALS [J].
JOHNSON, BR .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (11) :2640-2647
[15]   PERTURBATION-THEORY WITHOUT WAVEFUNCTIONS [J].
KILLINGBECK, J .
PHYSICS LETTERS A, 1978, 65 (02) :87-88
[16]  
LOEFFEL J, 1970, TH1167CERN REP
[17]   NONPERTURBATIVE APPROACH TO SCREENED COULOMB POTENTIALS [J].
MEHTA, CH ;
PATIL, SH .
PHYSICAL REVIEW A, 1978, 17 (01) :34-42
[19]   QUANTUM-MECHANICS WITH APPLICATIONS TO QUARKONIUM [J].
QUIGG, C ;
ROSNER, JL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 56 (04) :167-235
[20]  
Reed M., 1978, METHODS MODERN MATH