ON ADAPTIVE-STEP PRIMAL-DUAL INTERIOR-POINT ALGORITHMS FOR LINEAR-PROGRAMMING

被引:219
作者
MIZUNO, S
TODD, MJ
YE, YY
机构
[1] CORNELL UNIV,SCH OPERAT RES & IND ENGN,ITHACA,NY 14853
[2] UNIV IOWA,DEPT MANAGEMENT SCI,IOWA CITY,IA 52242
关键词
LINEAR PROGRAMMING; INTERIOR POINT ALGORITHMS; PATH-FOLLOWING ALGORITHMS; POTENTIAL REDUCTION ALGORITHMS;
D O I
10.1287/moor.18.4.964
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We describe several adaptive-step primal-dual interior point algorithms for linear programming. All have polynomial time complexity while some allow very long steps in favorable circumstances. We provide heuristic reasoning for expecting that the algorithms will perform much better in practice than guaranteed by the worst-case estimates, based on an analysis using a nonrigorous probabilistic assumption.
引用
收藏
页码:964 / 981
页数:18
相关论文
共 31 条
[21]   SMALL-DIMENSIONAL LINEAR-PROGRAMMING AND CONVEX HULLS MADE EASY [J].
SEIDEL, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :423-434
[22]   ON THE COMPLEXITY OF FOLLOWING THE CENTRAL PATH OF LINEAR-PROGRAMS BY LINEAR EXTRAPOLATION-II [J].
SONNEVEND, G ;
STOER, J ;
ZHAO, G .
MATHEMATICAL PROGRAMMING, 1991, 52 (03) :527-553
[23]  
Sonnevend G., 1985, LECTURE NOTES CONTRO, V84, P866
[24]  
SONNEVEND G., 1989, METHODS OPER RES, V63, P19
[25]   A CENTERED PROJECTIVE ALGORITHM FOR LINEAR-PROGRAMMING [J].
TODD, MJ ;
YE, YY .
MATHEMATICS OF OPERATIONS RESEARCH, 1990, 15 (03) :508-529
[26]   AN ALGORITHM FOR LINEAR-PROGRAMMING WHICH REQUIRES O(((M+N)N2+(M+N)1.5N)L) ARITHMETIC OPERATIONS [J].
VAIDYA, PM .
MATHEMATICAL PROGRAMMING, 1990, 47 (02) :175-201
[27]  
WILKS SS, 1962, MATH STATISTICS
[28]  
Ye Y., 1990, MATH DEV ARISING LIN, V114, P91
[29]  
YE Y, 1987, UNPUB FURTHER DEV IN
[30]   ON THE SUPERLINEAR AND QUADRATIC CONVERGENCE OF PRIMAL-DUAL INTERIOR POINT LINEAR PROGRAMMING ALGORITHMS [J].
Zhang, Yin ;
Tapia, Richard A. ;
Dennis, John E., Jr. .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (02) :304-324