HARDY INEQUALITY AND FRACTAL MEASURES

被引:5
作者
HUDSON, S
LECKBAND, M
机构
[1] Department of Mathematics, Florida International University, University Park, Miami
关键词
D O I
10.1016/0022-1236(92)90148-C
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hardy's inequality and the subsequent improvement by McGehee, Pigno, and Smith are generalized from the positive integers to sets of dimension 0, dimension 1, and in between. The asymptotic estimate obtained for the Fourier transform of fractal measures is much in the spirit of recent work by Strichartz. © 1992.
引用
收藏
页码:133 / 160
页数:28
相关论文
共 12 条
[1]   ASYMPTOTIC PROPERTIES OF SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH SIMPLE CHARACTERISTICS [J].
AGMON, S ;
HORMANDER, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :1-38
[2]  
BESICOVITCH AS, ALMOST PERIODIC FUNC
[3]  
Falconer, 1985, GEOMETRY FRACTAL SET
[4]  
FEDERER H, 1969, GEOMETRIC MEASURE TH, P191
[5]   Some new properties of Fourier constants [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ANNALEN, 1927, 97 :159-209
[6]  
JURKAT WB, 1984, INDIANA U MATH J, V33, P55
[7]   HARDY INEQUALITY AND THE L1 NORM OF EXPONENTIAL-SUMS [J].
MCGEHEE, OC ;
PIGNO, L ;
SMITH, B .
ANNALS OF MATHEMATICS, 1981, 113 (03) :613-618
[8]  
Stein E., 1956, T AM MATH SOC, V83, P482
[9]   FOURIER ASYMPTOTICS OF FRACTAL MEASURES [J].
STRICHARTZ, RS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 89 (01) :154-187
[10]   SELF-SIMILAR MEASURES AND THEIR FOURIER-TRANSFORMS .1. [J].
STRICHARTZ, RS .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (03) :797-817