HOW CANONICAL ARE ASHTEKAR VARIABLES

被引:13
作者
SOLOVIEV, VO
机构
[1] Institute for High Energy Physics, 142 284 Protvino, Moscow Region
关键词
D O I
10.1016/0370-2693(92)90604-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Attention is paid to the fact that in field theory a commutator of functional derivatives may differ from zero by surface integrals. Ashtekar's formalism is a primer which demonstrates that transformations looking locally canonical can lead to the appearance of surface terms in a symplectic form of field theory. The prescription for the delta-function is given that allows to preserve surface terms in local calculations of Poisson brackets.
引用
收藏
页码:30 / 34
页数:5
相关论文
共 19 条
[11]   NONPERTURBATIVE QUANTUM GEOMETRIES [J].
JACOBSON, T ;
SMOLIN, L .
NUCLEAR PHYSICS B, 1988, 299 (02) :295-345
[12]   ROLE OF SURFACE INTEGRALS IN HAMILTONIAN FORMULATION OF GENERAL RELATIVITY [J].
REGGE, T ;
TEITELBOIM, C .
ANNALS OF PHYSICS, 1974, 88 (01) :286-318
[13]   LOOP SPACE REPRESENTATION OF QUANTUM GENERAL-RELATIVITY [J].
ROVELLI, C ;
SMOLIN, L .
NUCLEAR PHYSICS B, 1990, 331 (01) :80-152
[14]   CONSTRAINT ALGEBRA IN GENERAL-RELATIVITY [J].
ROVELLI, C .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1986, 92 (01) :49-60
[15]  
SOLOVIEV VO, 1992, UNPUB POINCARE ALGEB
[16]  
SOLOVIEV VO, 1991, IN PRESS MG6 P KYOT
[17]  
SOLOVIEV VO, IN PRESS SURFACE TER
[18]  
SOLOVYEV VO, 1985, THEOR MATH PHYS, V65, P400
[19]  
VLADIMIROV VS, 1967, EQUATIONS MATH PHYSI