THE MOST PROBABLE CRITICAL DISTANCE FOR 2 UNEQUAL VORTICES IN 2-DIMENSIONAL TURBULENCE

被引:3
作者
HE, XY
机构
[1] Mathematics Research Centre, University of Warwick, Coventry
关键词
D O I
10.1016/0960-0779(94)90030-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a probabilistic formalism, a functional form for the critical separation distance d(c) is derived, to describe most probable inelastic interaction states of two unequal like-signed vortices in two-dimensional (2D) decaying turbulence. For a vortex pair of same vorticity amplitude with different sizes, the functional form approximates well to the numerical critical merger distance given by the vortex dynamical systems. Predictions and implications from this probabilistic solution are discussed.
引用
收藏
页码:1183 / 1191
页数:9
相关论文
共 16 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   ON THE STATISTICAL PROPERTIES OF TWO-DIMENSIONAL DECAYING TURBULENCE [J].
BENZI, R ;
PATARNELLO, S ;
SANTANGELO, P .
EUROPHYSICS LETTERS, 1987, 3 (07) :811-818
[3]   EVOLUTION OF VORTEX STATISTICS IN 2-DIMENSIONAL TURBULENCE [J].
CARNEVALE, GF ;
MCWILLIAMS, JC ;
POMEAU, Y ;
WEISS, JB ;
YOUNG, WR .
PHYSICAL REVIEW LETTERS, 1991, 66 (21) :2735-2737
[4]   QUANTIFICATION OF THE INELASTIC INTERACTION OF UNEQUAL VORTICES IN 2-DIMENSIONAL VORTEX DYNAMICS [J].
DRITSCHEL, DG ;
WAUGH, DW .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (08) :1737-1744
[5]   VORTEX PROPERTIES OF 2-DIMENSIONAL TURBULENCE [J].
DRITSCHEL, DG .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (04) :984-997
[6]  
FOX F, 1993, CHAOS, V3, P313
[7]  
HE X, UNPUB VORTEX PROPERT
[8]   ON THE EVOLUTION EQUATION OF AN INVISCID VORTEX IN 2-D TURBULENCE [J].
HE, XY .
CHAOS SOLITONS & FRACTALS, 1994, 4 (05) :693-699
[9]  
HOPFINGER EJ, 1993, ANNU REV FLUID MECH, V25, P241
[10]  
KIDA S, 1989, LECT NOTES NUM APPL, V10, P31