ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements

被引:125
作者
Brown, Matthew R. G. [1 ]
Sidhu, Gagan S. [2 ,3 ]
Greiner, Russell [2 ,3 ]
Asgarian, Nasimeh [2 ,3 ]
Bastani, Meysam [2 ,3 ]
Silverstone, Peter H. [1 ]
Greenshaw, Andrew J. [1 ]
Dursun, Serdar M. [1 ]
机构
[1] Univ Alberta, Dept Psychiat, Edmonton, AB, Canada
[2] Univ Alberta, Dept Comp Sci, Edmonton, AB, Canada
[3] Alberta Innovates Ctr Machine Learning, Edmonton, AB, Canada
来源
FRONTIERS IN SYSTEMS NEUROSCIENCE | 2012年 / 6卷
基金
加拿大自然科学与工程研究理事会;
关键词
ADHD; children; classifier; diagnosis; functional connectivity; ICA; machine learning; multivoxel pattern analysis;
D O I
10.3389/fnsys.2012.00069
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuroimaging-based diagnostics could potentially assist clinicians to make more accurate diagnoses resulting in faster, more effective treatment. We participated in the 2011 ADHD-200 Global Competition which involved analyzing a large dataset of 973 participants including Attention deficit hyperactivity disorder (ADHD) patients and healthy controls. Each participant's data included a resting state functional magnetic resonance imaging (fMRI) scan as well as personal characteristic and diagnostic data. The goal was to learn a machine learning classifier that used a participant's resting state fMRI scan to diagnose (classify) that individual into one of three categories: healthy control, ADHD combined (ADHD C) type, or ADHD inattentive (ADHD I) type. We used participants' personal characteristic data (site of data collection, age, gender, handedness, performance IQ, verbal IQ, and full scale IQ), without any fMRI data, as input to a logistic classifier to generate diagnostic predictions. Surprisingly, this approach achieved the highest diagnostic accuracy (62.52%) as well as the highest score (124 of 195) of any of the 21 teams participating in the competition. These results demonstrate the importance of accounting for differences in age, gender, and other personal characteristics in imaging diagnostics research. We discuss further implications of these results for fMRI-based diagnosis as well as fMRI-based clinical research. We also document our tests with a variety of imaging-based diagnostic methods, none of which performed as well as the logistic classifier using only personal characteristic data.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 46 条
[11]   Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder [J].
Castellanos, F. Xavier ;
Margulies, Daniel S. ;
Kelly, Clare ;
Uddin, Lucina Q. ;
Ghaffari, Manely ;
Kirsch, Andrew ;
Shaw, David ;
Shehzad, Zarrar ;
Di Martino, Adriana ;
Biswal, Bharat ;
Sonuga-Barke, Edmund J. S. ;
Rotrosen, John ;
Adler, Lenard A. ;
Milham, Michael P. .
BIOLOGICAL PSYCHIATRY, 2008, 63 (03) :332-337
[12]   Pattern of neural responses to verbal fluency shows diagnostic specificity for schizophrenia and bipolar disorder [J].
Costafreda, Sergi G. ;
Fu, Cynthia H. Y. ;
Picchioni, Marco ;
Toulopoulou, Timothea ;
McDonald, Colm ;
Kravariti, Eugenia ;
Walshe, Muriel ;
Prata, Diana ;
Murray, Robin M. ;
McGuire, Philip K. .
BMC PSYCHIATRY, 2011, 11
[13]   Comparison of Multi-Subject ICA Methods for Analysis of fMRI Data [J].
Erhardt, Erik Barry ;
Rachakonda, Srinivas ;
Bedrick, Edward J. ;
Allen, Elena A. ;
Adali, Tuelay ;
Calhoun, Vince D. .
HUMAN BRAIN MAPPING, 2011, 32 (12) :2075-2095
[14]   Atypical Default Network Connectivity in Youth with Attention-Deficit/Hyperactivity Disorder [J].
Fair, Damien A. ;
Posner, Jonathan ;
Nagel, Bonnie J. ;
Bathula, Deepti ;
Dias, Taciana G. Costa ;
Mills, Kathryn L. ;
Blythe, Michael S. ;
Giwa, Aishat ;
Schmitt, Colleen F. ;
Nigg, Joel T. .
BIOLOGICAL PSYCHIATRY, 2010, 68 (12) :1084-1091
[15]   Discriminant analysis of functional connectivity patterns on Grassmann manifold [J].
Fan, Yong ;
Liu, Yong ;
Wu, Hong ;
Hao, Yihui ;
Liu, Haihong ;
Liu, Zhening ;
Jiang, Tianzi .
NEUROIMAGE, 2011, 56 (04) :2058-2067
[16]   The human brain is intrinsically organized into dynamic, anticorrelated functional networks [J].
Fox, MD ;
Snyder, AZ ;
Vincent, JL ;
Corbetta, M ;
Van Essen, DC ;
Raichle, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (27) :9673-9678
[17]   Ten ironic rules for non-statistical reviewers [J].
Friston, Karl .
NEUROIMAGE, 2012, 61 (04) :1300-1310
[18]   Dynamic causal modelling [J].
Friston, KJ ;
Harrison, L ;
Penny, W .
NEUROIMAGE, 2003, 19 (04) :1273-1302
[19]   Pattern classification of sad facial processing: Toward the development of neurobiological markers in depression [J].
Fu, Cynthia H. Y. ;
Mourao-Miranda, Janaina ;
Costafrecla, Sergi G. ;
Khanna, Akash ;
Marquand, Andre F. ;
Williams, Steve C. R. ;
Brammer, Michael J. .
BIOLOGICAL PSYCHIATRY, 2008, 63 (07) :656-662
[20]   Functional connectivity in the resting brain: A network analysis of the default mode hypothesis [J].
Greicius, MD ;
Krasnow, B ;
Reiss, AL ;
Menon, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :253-258