KAC-MOODY CONSTRUCTION OF TODA TYPE FIELD-THEORIES

被引:66
作者
ARATYN, H [1 ]
FERREIRA, LA [1 ]
GOMES, JF [1 ]
ZIMERMAN, AH [1 ]
机构
[1] UNIV NACL ESTADUAL SAO PAULO,INST FIS TEOR,BR-01405 SAO PAULO,BRAZIL
关键词
D O I
10.1016/0370-2693(91)91171-Q
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the coadjoint orbit method we derive a geometric WZWN action based on the extended two-loop Kac-Moody algebra. We show that under a hamiltonian reduction procedure, which respects conformal invariance, we obtain a hierarchy of Toda type field theories, which contain as submodels the Toda molecule and periodic Toda lattice theories. We also discuss the classical r-matrix and integrability properties..
引用
收藏
页码:372 / 380
页数:9
相关论文
共 28 条
[11]   NON-COMPACT SYMMETRIC-SPACES AND THE TODA MOLECULE EQUATIONS [J].
FERREIRA, LA ;
OLIVE, DI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (03) :365-384
[12]   G/H CONFORMAL FIELD-THEORY FROM GAUGED WZW MODEL [J].
GAWEDZKI, K ;
KUPIAINEN, A .
PHYSICS LETTERS B, 1988, 215 (01) :119-123
[13]   WESS-ZUMINO-WITTEN MODEL AS A THEORY OF FREE FIELDS [J].
GERASIMOV, A ;
MOROZOV, A ;
OLSHANETSKY, M ;
MARSHAKOV, A ;
SHATASHVILI, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (13) :2495-2589
[14]  
Goddard P., 1986, INT J MOD PHYS A, V1, P303, DOI [10.1142/S0217751X86000149, DOI 10.1142/S0217751X86000149]
[15]  
Humphreys J.E., 1978, INTRO LIE ALGEBRAS R, V9
[16]   A GKO CONSTRUCTION BASED ON A PATH INTEGRAL FORMULATION OF GAUGED WESS-ZUMINO-WITTEN ACTIONS [J].
KARABALI, D ;
PARK, QH ;
SCHNITZER, HJ ;
YANG, Z .
PHYSICS LETTERS B, 1989, 216 (3-4) :307-312
[17]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
[18]   REPRESENTATION OF ZERO CURVATURE FOR THE SYSTEM OF NON-LINEAR PARTIAL-DIFFERENTIAL EQUATIONS XALPHA,ZZ-BAR=EXP(KX)ALPHA AND ITS INTEGRABILITY [J].
LEZNOV, AN ;
SAVELIEV, MV .
LETTERS IN MATHEMATICAL PHYSICS, 1979, 3 (06) :489-494
[19]   LOCAL CONSERVED-DENSITIES AND ZERO-CURVATURE CONDITIONS FOR TODA LATTICE FIELD-THEORIES [J].
OLIVE, D ;
TUROK, N .
NUCLEAR PHYSICS B, 1985, 257 (02) :277-301
[20]   ALGEBRAIC STRUCTURE OF TODA SYSTEMS [J].
OLIVE, DI ;
TUROK, N .
NUCLEAR PHYSICS B, 1983, 220 (04) :491-507