HEIGHT CORRELATIONS IN THE ABELIAN SANDPILE MODEL

被引:129
作者
MAJUMDAR, SN
DHAR, D
机构
[1] Tata Inst. of Fund. Res., Bombay
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 07期
关键词
D O I
10.1088/0305-4470/24/7/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the distribution of heights in the self-organized critical state of the Abelian sandpile model on a d-dimensional hypercubic lattice. We calculate analytically the concentration of sites having minimum allowed value in the critical state. We also calculate, in the critical state, the probability that the heights, at two sites separated by a distance r, would both have minimum values and show that the lowest-order r-dependent term in it varies as r-2d for large r.
引用
收藏
页码:L357 / L362
页数:6
相关论文
共 17 条
[11]   GEOMETRY AND DYNAMICS OF DETERMINISTIC SAND PILES [J].
LIU, SH ;
KAPLAN, T ;
GRAY, LJ .
PHYSICAL REVIEW A, 1990, 42 (06) :3207-3212
[12]   LARGE-SCALE SIMULATION OF AVALANCHE CLUSTER DISTRIBUTION IN SAND PILE MODEL [J].
MANNA, SS .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (1-2) :509-521
[13]  
Spitzer F., 1964, PRINCIPLES RANDOM WA, P148
[14]   MEAN FIELD-THEORY OF SELF-ORGANIZED CRITICAL PHENOMENA [J].
TANG, C ;
BAK, P .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (5-6) :797-802
[15]   SELF-ORGANIZED CRITICALITY IN A DETERMINISTIC AUTOMATON [J].
WIESENFELD, K ;
THEILER, J ;
MCNAMARA, B .
PHYSICAL REVIEW LETTERS, 1990, 65 (08) :949-952
[16]  
Wolfram Research Inc., 2020, MATH VERS 12 0
[17]   SCALING THEORY OF SELF-ORGANIZED CRITICALITY [J].
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1989, 63 (05) :470-473