MOLECULAR THERMODYNAMICS OF SOLUTE-POLYMER-SUPERCRITICAL FLUID SYSTEMS

被引:66
作者
SHIM, JJ [1 ]
JOHNSTON, KP [1 ]
机构
[1] UNIV TEXAS, DEPT CHEM ENGN, AUSTIN, TX 78712 USA
关键词
D O I
10.1002/aic.690370414
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The distribution coefficients of the solutes (toluene, naphthalene, and phenanthrene) are reported at infinite dilution between silicone rubber and supercritical-fluid carbon dioxide. A new technique is described in which a thin film of polymer is coated and cross-linked onto silica, and the distribution coefficient is measured rapidly by elution supercritical-fluid chromatography. Because CO2 significantly enhances the solute's volatility and its diffusion coefficient in the polymer, it is possible to study solute-polymer interactions at room temperature for nonvolatile compounds which would be difficult to study by conventional techniques such as gas chromatography. These infinite dilution data are used to determine solute-polymer interaction parameters to calculate phase diagrams over a wide concentration range. The residual, combinatorial, and cross-link contributions to the solute activity coefficient in the polymer are discussed as a function of concentration. In addition, pronounced pressure and temperature effects are described in terms of experimentally measured solute partial molar volumes (to - 14 L/mol) and partial molar enthalpies (to - 850 kJ/mol) in the fluid phase.
引用
收藏
页码:607 / 616
页数:10
相关论文
共 40 条