At any template position, the decision to extend the transcript by one residue or to release the nascent RNA represents a kinetic competition between elongation and termination pathways. This competition is discussed in terms of alternative Eyring transition state barriers; changes in termination efficiency correspond to small changes in the relative heights of these barriers. Elongation complexes are stable at nonterminator positions; a model is presented to explain the destabilization of these complexes at intrinsic termination sites. Functionally analogous effects can operate at rho-dependent terminators. Mechanisms for modulation of termination efficiency by regulatory proteins are described.