BACKSCATTER COEFFICIENT ESTIMATION USING ARRAY TRANSDUCERS

被引:41
作者
INSANA, MF
HALL, TJ
COOK, LT
机构
[1] Department of Radiology, University of Kansas Medical Center, Kansas City.
基金
美国国家卫生研究院;
关键词
D O I
10.1109/58.308508
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper describes an extension of our broadband method for estimating backscatter coefficients from random media to include data from array transducers. Four different transducer designs have now been considered: one- and two-dimensional linear arrays, annular arrays, and single-element focused pistons commonly used in mechanical sector scanners. The analysis shows that if the backscatter echo spectrum is properly normalized, the shape of the piezoelectric elements affects only the magnitude and not the frequency dependence of the backscatter coefficient estimates. Experimental data were acquired using laboratory and clinical imaging instrumentation to verify the analysis. We compared backscatter coefficients measured as a function of frequency from well-defined scattering media that were obtained using a 1-D linear array and focused piston transducers. Instrument-independent results were found that matched theoretical predictions within the measurement error between 2 and 12 MHz. We conclude from this study that accurate backscatter coefficient estimates may be easily obtained using current clinical imaging instrumentation.
引用
收藏
页码:714 / 723
页数:10
相关论文
共 35 条
[31]   2-DIMENSIONAL ARRAYS FOR MEDICAL ULTRASOUND [J].
SMITH, SW ;
TRAHEY, GE ;
VONRAMM, OT .
ULTRASONIC IMAGING, 1992, 14 (03) :213-233
[32]   SPECTRAL-ANALYSIS OF ECHOES FOR BACKSCATTERING COEFFICIENT MEASUREMENT [J].
UEDA, M ;
OZAWA, Y .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1985, 77 (01) :38-47
[33]  
WAAG RC, 1993, ULTRASONIC SCATTERIN, P251
[34]  
Zagzebski J. A., 1993, ULTRASONIC SCATTERIN, P451
[35]  
1985, HDB CHEM PHYSICS, pE43