STATISTICAL PROPERTIES OF THE EIGENVALUE SPECTRUM OF THE 3-DIMENSIONAL ANDERSON HAMILTONIAN

被引:122
作者
HOFSTETTER, E
SCHREIBER, M
机构
[1] Institut für Physikalische Chemie, Johannes-Gutenberg-Universität, D-55099 Mainz
关键词
D O I
10.1103/PhysRevB.48.16979
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A method to describe the metal-insulator transition (MIT) in disordered systems is presented. For this purpose the statistical properties of the eigenvalue spectrum of the Anderson Hamiltonian are considered. As the MIT corresponds to the transition between chaotic and nonchaotic behavior, it can be expected that the random matrix theory enables a qualitative description of the phase transition. We show that it is possible to determine the critical disorder in this way. In the thermodynamic limit the critical point behavior separates two different regimes: one for the metallic side and one for the insulating side.
引用
收藏
页码:16979 / 16985
页数:7
相关论文
共 28 条
  • [1] ALTSHULER BL, 1988, ZH EKSP TEOR FIZ, V67, P625
  • [2] [Anonymous], 1982, ADV APPL MATH
  • [3] CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS
    BOHIGAS, O
    GIANNONI, MJ
    SCHMIT, C
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (01) : 1 - 4
  • [4] LOCALIZATION, QUANTUM INTERFERENCE, AND THE METAL-INSULATOR-TRANSITION
    BULKA, B
    SCHREIBER, M
    KRAMER, B
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 66 (01): : 21 - 30
  • [5] SCALING PROPERTIES OF THE EIGENVALUE SPACING DISTRIBUTION FOR BAND RANDOM MATRICES
    CASATI, G
    IZRAILEV, F
    MOLINARI, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (20): : 4755 - 4762
  • [6] TAYLOR AND PADE ANALYSIS OF THE LEVEL SPACING DISTRIBUTIONS OF RANDOM-MATRIX ENSEMBLES
    DIETZ, B
    HAAKE, F
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 80 (01): : 153 - 158
  • [7] ABSENCE OF LOCALIZATION IN A RANDOM-DIMER MODEL
    DUNLAP, DH
    WU, HL
    PHILLIPS, PW
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (01) : 88 - 91
  • [8] LOCALIZED STATES IN DISORDERED-SYSTEMS AS BOUND-STATES IN POTENTIAL WELLS
    ECONOMOU, EN
    SOUKOULIS, CM
    ZDETSIS, AD
    [J]. PHYSICAL REVIEW B, 1984, 30 (04): : 1686 - 1694
  • [9] ABSENCE OF DIFFUSION IN THE ANDERSON TIGHT-BINDING MODEL FOR LARGE DISORDER OR LOW-ENERGY
    FROHLICH, J
    SPENCER, T
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (02) : 151 - 184
  • [10] QUANTUM DYNAMICS OF A NONINTEGRABLE SYSTEM
    GREMPEL, DR
    PRANGE, RE
    FISHMAN, S
    [J]. PHYSICAL REVIEW A, 1984, 29 (04): : 1639 - 1647