2-DIMENSIONAL LATTICE GAUGE-THEORY BASED ON A QUANTUM GROUP

被引:65
作者
BUFFENOIR, E
ROCHE, P
机构
[1] Centre de Physique Theorique de L' Ecole Polytechnique, Palaiseau Cedex
关键词
D O I
10.1007/BF02099153
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article we analyse a two dimensional lattice gauge theory based on a quantum group. The algebra generated by gauge fields is the lattice algebra introduced recently by A. Yu. Alekseev, H. Grosse and V. Schomerus in [1]. We define and study Wilson loops. This theory is quasi-topological as in the classical case, which allows us to compute the correlation functions of this theory on an arbitrary surface.
引用
收藏
页码:669 / 698
页数:30
相关论文
共 19 条
[1]   HIDDEN QUANTUM GROUPS INSIDE KAC-MOODY ALGEBRA [J].
ALEKSEEV, A ;
FADDEEV, L ;
SEMENOVTIANSHANSKY, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :335-345
[2]  
ALEKSEEV A, 1994, HEPTH9403
[3]   QUANTUM TODA THEORY [J].
BABELON, O ;
BONORA, L .
PHYSICS LETTERS B, 1991, 253 (3-4) :365-372
[4]   Q-DEFORMED LATTICE GAUGE-THEORY AND 3-MANIFOLD INVARIANTS [J].
BOULATOV, DV .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (18) :3139-3162
[5]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[6]  
BUFFENOIR E, UNPUB
[7]  
CREUTZ M., 1983, QUARKS GLUONS LATTIC
[8]  
DRINFELD VG, 1990, LENINGRAD MATH J, V1, P321
[9]  
Faddeev L. D, 1988, ALGEBRAIC ANAL, P129
[10]  
Fock V. V., 1992, POISSON STRUCTURES M, P72