CHARACTERIZATION OF PERIOD-DOUBLING SCENARIOS IN TAYLOR-COUETTE FLOW

被引:20
作者
BUZUG, T
VONSTAMM, J
PFISTER, G
机构
[1] Institut für Angewandte Physik, Christian Albrechts Universität Zu Kiel
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 02期
关键词
D O I
10.1103/PhysRevE.47.1054
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Taylor-Couette system is an extraordinary hydrodynamic system, showing almost all low-dimensional scenarios for routes to chaos for proper boundary conditions. For a period-doubling route to chaos, bifurcation diagrams were experimentally recorded and the dynamic variables such as fractal dimensions, Lyapunov exponents, and entropies are estimated as a function of Reynolds number. The evolution of the correlation dimension D2 with Reynolds number Re shows that D2 is-proportional-to (Re-Re(c))1/4, which is similar to continuous phase transitions. An investigation of the critical phenomena must be performed as high-precision hydrodynamic experiments because the results show that the kind of scenario depends sensitively on the boundary conditions.
引用
收藏
页码:1054 / 1065
页数:12
相关论文
共 35 条
[11]   ON THE DETECTION OF DETERMINISTIC STRUCTURES IN IRREGULAR SIGNALS [J].
DAMMIG, M ;
BODEN, C ;
MITSCHKE, F .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1992, 55 (02) :121-125
[12]  
DIPRIMA RC, 1980, HYDRODYNAMIC INSTABI, P128
[13]   LIAPUNOV EXPONENTS FROM TIME-SERIES [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D ;
CILIBERTO, S .
PHYSICAL REVIEW A, 1986, 34 (06) :4971-4979
[14]   FUNDAMENTAL LIMITATIONS FOR ESTIMATING DIMENSIONS AND LYAPUNOV EXPONENTS IN DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
RUELLE, D .
PHYSICA D, 1992, 56 (2-3) :185-187
[15]  
ENGE N, UNPUB
[16]  
Feigenbaum M. J., 1980, LOS ALAMOS SCI, V1, P4
[17]  
GEISTER G, 1985, THESIS CHRISTIAN ALB
[18]  
GIGLIO M, 1981, NONLINEAR PHENOMENA, P287
[19]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208
[20]  
Libchaber A., 1981, NONLINEAR PHENOMENA, P259