A 6TH-ORDER EXPONENTIALLY FITTED METHOD FOR THE NUMERICAL-SOLUTION OF THE RADIAL SCHRODINGER-EQUATION

被引:77
作者
CASH, JR [1 ]
RAPTIS, AD [1 ]
SIMOS, TE [1 ]
机构
[1] NATL TECH UNIV ATHENS,DEPT MATH,GR-15773 ATHENS,GREECE
关键词
D O I
10.1016/0021-9991(90)90045-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new sixth-order method of Runge-Kutta type is developed for the numerical integration of the single channel radial Schrodinger equation. The formula derived contains certain free parameters which allows it to be fitted automatically to exponential functions. Extensive numerical testing on the resonance problem and on the bound states problem indicates that this new method is generally more efficient than other previously developed finite difference methods. © 1990.
引用
收藏
页码:413 / 423
页数:11
相关论文
共 13 条
[1]  
Allison A. C., 1970, Journal of Computational Physics, V6, P378, DOI 10.1016/0021-9991(70)90037-9
[2]   COULOMB WAVE-FUNCTIONS FOR ALL REAL ETA AND RHO [J].
BARNETT, AR ;
FENG, DH ;
STEED, JW ;
GOLDFARB, LJ .
COMPUTER PHYSICS COMMUNICATIONS, 1974, 8 (05) :377-395
[3]  
Blatt J. M., 1967, J COMP PHYSIOL, V1, P382, DOI [10.1016/0021-9991(67)90046-0, DOI 10.1016/0021-9991(67)90046-0]
[4]   A HIGH-ORDER METHOD FOR THE NUMERICAL-INTEGRATION OF THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
CASH, JR ;
RAPTIS, AD .
COMPUTER PHYSICS COMMUNICATIONS, 1984, 33 (04) :299-304
[5]  
Cooley J. W., 1961, MATH COMPUT, V15, P363, DOI [10.2307/2003025, DOI 10.2307/2003025]
[6]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[7]   COLEMAN METHOD MAXIMALLY ADAPTED TO THE SCHRODINGER-EQUATION [J].
IXARU, LG ;
BERCEANU, S .
COMPUTER PHYSICS COMMUNICATIONS, 1987, 44 (1-2) :11-20
[8]  
IXARU LG, 1978, TOPICS THEORETICAL P, P259
[9]  
LANDAU LD, 1965, QUANTUM MECHANICS, P54
[10]   EXPONENTIAL-FITTING METHODS FOR NUMERICAL-SOLUTION OF SCHRODINGER EQUATION [J].
RAPTIS, A ;
ALLISON, AC .
COMPUTER PHYSICS COMMUNICATIONS, 1978, 14 (1-2) :1-5