COLEMAN METHOD MAXIMALLY ADAPTED TO THE SCHRODINGER-EQUATION

被引:61
作者
IXARU, LG
BERCEANU, S
机构
关键词
D O I
10.1016/0010-4655(87)90013-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:11 / 20
页数:10
相关论文
共 9 条
[1]   A NEW 4TH-ORDER METHOD FOR Y''=G(X)Y+R(X) [J].
COLEMAN, JP .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (02) :185-195
[2]   A METHOD FOR THE NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS OF 2ND ORDER WITHOUT EXPLICIT 1ST DERIVATIVES [J].
DEVOGELAERE, R .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1955, 54 (03) :119-125
[3]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[4]   COMPARISON OF SOME 4-STEP METHODS FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1985, 38 (03) :329-337
[5]  
IXARU LG, 1984, NUMERICAL METHOD DIF
[6]  
IXARU LG, IN PRESS J COMPUT PH
[7]   ON THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION [J].
RAPTIS, AD .
COMPUTER PHYSICS COMMUNICATIONS, 1981, 24 (01) :1-4
[9]   2-STEP METHODS FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION [J].
RAPTIS, AD .
COMPUTING, 1982, 28 (04) :373-378