LEAST-SQUARES FINITE-ELEMENTS FOR THE STOKES PROBLEM

被引:106
作者
JIANG, BN [1 ]
CHANG, CL [1 ]
机构
[1] CLEVELAND STATE UNIV,DEPT MATH,CLEVELAND,OH 44115
关键词
D O I
10.1016/0045-7825(90)90003-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A least-squares method based on the first-order velocity-pressure-vorticity formulation for the Stokes problem is proposed. This method leads to a minimization problem rather than to a saddle-point problem. The choice of the combinations of elements is thus not subject to the Ladyzhenskaya-Babuška-Brezzi (LBB) condition. Numerical results showing the optimal rate of convergence for equal-order interpolations are given. © 1990.
引用
收藏
页码:297 / 311
页数:15
相关论文
共 16 条
[1]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[2]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[3]  
CAREY GF, 1983, FINITE ELEMENTS 2ND, V2
[4]  
CAREY GF, 1986, FINITE ELEMENTS FLUI, V0006
[5]  
CHANG CL, 1988, 8808 CLEV STAT U DEP
[6]  
CHANG CL, 1987, MIXED FINITE ELEMENT
[7]  
Girault V., 1986, FINITE ELEMENT METHO, V5
[9]   A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .5. CIRCUMVENTING THE BABUSKA-BREZZI CONDITION - A STABLE PETROV-GALERKIN FORMULATION OF THE STOKES PROBLEM ACCOMMODATING EQUAL-ORDER INTERPOLATIONS [J].
HUGHES, TJR ;
FRANCA, LP ;
BALESTRA, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 59 (01) :85-99
[10]  
JIANG BN, 1988, J NUMER METHODS FLUI, V8, P933