EXPANSIONS OF CHROMATIC POLYNOMIALS AND LOG-CONCAVITY

被引:67
作者
BRENTI, F [1 ]
机构
[1] UNIV MICHIGAN,DEPT MATH,ANN ARBOR,MI 48109
关键词
D O I
10.2307/2154193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present several results and open problems about log-concavity properties of sequences associated with graph colorings. Five polynomials intimately related to the chromatic polynomial of a graph are introduced and their zeros, combinatorial and log-concavity properties are studied. Four of these polynomials have never been considered before in the literature and some yield new expansions for the chromatic polynomial.
引用
收藏
页码:729 / 756
页数:28
相关论文
共 63 条
[11]  
BRENTI F, 1989, MEM AM MATH SOC, V413
[12]  
BRENTI F, IN PRESS PACIFIC J M
[13]  
BUTLER LM, 1987, P AM MATH SOC, V101, P771
[14]  
COMTET L, 1974, ADV COMBINATORICS
[15]   CHARACTERIZATION OF QUADRATIC AND CUBIC SIGMA-POLYNOMIALS [J].
DHURANDHAR, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (03) :210-220
[16]  
Dirac Gabriel Andrew, 1961, ABH MATH SEM HAMBURG, V25, P71, DOI [10.1007/BF02992776, DOI 10.1007/BF02992776]
[17]  
FOATA D, 1970, C MATH SOC J BOLYAI, V4
[18]  
Frucht R.W., 1983, ARS COMBINATORIA A, V16A, P161
[19]  
Gavril F., 1974, Journal of Combinatorial Theory, Series B, V16, P47, DOI 10.1016/0095-8956(74)90094-X
[20]  
GERNERT D, 1985, METHODS OPER RES, V49, P233