Biological activities of biapenem, imipenem, and meropenem were compared with respect to permeability into Gram-negative bacteria, binding to penicillin-binding proteins (PBPs), and hydrolysis by beta-lactamases. Permeability for the three carbapenems was similar when measured in Serratia marcescens 56 producing a carbapenem-hydrolyzing beta-lactamase. Penetration of the carbapenems was comparable with cephaloridine and faster than piperacillin or the extended spectrum cephalosporin cefotaxime. All the carbapenems bound most strongly to PBP 2 of Escherichia coli and Pseudomonas aeruginosa, and to PBP 1 of Staphylococcus aureus. In addition, biapenem showed strong affinity with PBP la of E. coli and PBP Ib of P. aeruginosa. Selected serine beta-lactamases, including the extended spectrum plasmid-mediated beta-lactamases, hydrolyzed these carbapenems at rates < 0.1% that of cephaloridine. Metallo-beta-lactamases hydrolysed the carbapenems at measurable rates, with enzymes from Bacteroides fragilis and Xanthomonas maltophilia hydrolyzing biapenem at lower V-max values than meropenem or imipenem. In conclusion, all the carbapenems exhibited good rates of penetration, bound strongly to PBPs in both Gram-negative and Gram-positive bacteria, and were stable to most Group 1 and Group 2 serine beta-lactamases, but were hydrolyzed by metallo-beta-lactamases.