DIFFUSION FOR GLOBAL OPTIMIZATION IN RN

被引:121
作者
CHIANG, TS
HWANG, CR
SHEU, SJ
机构
[1] Acad Sinica, Taipei, Taiwan, Acad Sinica, Taipei, Taiwan
关键词
DIFFUSION;
D O I
10.1137/0325042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We seek a global minimum of U:R**n yields R. The solution to (*) (d/dt)X(t) equals minus DEL U(X(t)) will find local minima. Using the idea of simulated annealing, we consider the diffusion process, dX(t) equals minus DEL U(X(t)) dt plus nu (t) dW(T), X(0) equals x, where W( ) is the n-dimensional standard Brownian motion and one-half nu **2(t) is the annealing rate which decreases to zero as t goes to infinity . Under suitable conditions on U(x), we prove that X(t) converges weakly to a probability measure pi if for large t, nu **2(t) equals c/log t with c greater than c//0, where c//0 has a simple expression involving the action function of the dynamical system (*), pi concentrates on the global minima of U and is the weak limit of the Gibbs densities pi //t(x) varies directly as exp( minus 2U(x)/ nu **2(t)).
引用
收藏
页码:737 / 753
页数:17
相关论文
共 16 条
[11]  
PARISI G, 1983, PROGR GAUGE FIELD TH
[12]  
SHEU SJ, 1985, SIAM J MATH ANAL, V12, P451
[13]  
Stroock D.W., 2007, MULTIDIMENSIONAL DIF
[14]  
[No title captured]
[15]  
[No title captured]
[16]  
[No title captured]