STATE OBSERVERS FOR VARIABLE-RELUCTANCE MOTORS

被引:96
作者
LUMSDAINE, A
LANG, JH
机构
[1] Department of Electrical Engineering and Computer Science, Laboratory for Electromagnetic and Electronic Systems, Massachusetts Institute of Technology, Cambridge
基金
美国能源部;
关键词
D O I
10.1109/41.52962
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A sequence of progressively more complex state observers, each driven by measurements of phase voltages and currents, is developed for variable-reluctance motors. For the simpler observers, the exponential stability of their error dynamics in a neighborhood of the origin is proven. For all observers, numerical or physical experiments are provided to demonstrate the globally stable error dynamics. In several of the physical experiments, rotor position is estimated to better than one part in 50000 of a revolution. © 1990 IEEE
引用
收藏
页码:133 / 142
页数:10
相关论文
共 26 条
[11]  
Jones L.A., Lang J.H., A stable observer for the permanent magnet synchronous motor, Proc. IEEE IECON, pp. 117-204, (1987)
[12]  
Lumsdaine A., Control of a variable reluctance motor based on state observation, S.M. thesis, (1985)
[13]  
Lumsdaine A., Lang J.H., Balas M.J., State observers for variable reluctance motors: Analyses and experiments, Proc. Asilomar Conf. Circuits Syst. Comput., pp. 660-664, (1985)
[14]  
Lumsdaine A., Lang J.H., Balas M.J., A state observer for the variable reluctance motor, Proc. Incremental Contr. Syst. Devices Symp., pp. 267-273, (1986)
[15]  
Luenberger D.G., An introduction to observers, IEEE Trans. Automat. Contr., AC-16, pp. 596-602, (1971)
[16]  
Luenberger D.G., Introduction to Dynamic Systems, (1979)
[17]  
Thau F.E., Observing the state of nonlinear dynamic systems, Int. J. Contr., 17, pp. 471-479, (1973)
[18]  
Kou S.R., Elliot D.L., Tarn T.J., Exponential observers for nonlinear dynamic systems, Inform. Contr., 29, pp. 204-216, (1975)
[19]  
Bestle D., Zeitz M., Canonical form observer for nonlinear timevariable systems, Int. J. Contr., 38, pp. 419-431, (1983)
[20]  
Krener A.J., Respondek W., Nonlinear observers with linearizable error dynamics, SIAM J. Contr. Optimization, 23, pp. 197-216, (1985)