LEARNING AND GENERALIZATION IN A 2-LAYER NEURAL-NETWORK - THE ROLE OF THE VAPNIK-CHERVONENKIS DIMENSION

被引:44
作者
OPPER, M
机构
[1] Physikalisches Institut, Universität Würzburg, D-97074 Wurzburg, Am Hubland
关键词
D O I
10.1103/PhysRevLett.72.2113
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bounds for the generalization ability of neural networks based on Vapnik-Chervonenkis (VC) theory are compared with statistical mechanics results for the case of the parity machine. For fixed phase space dimension, the VC dimension grows arbitrarily by increasing the number K of hidden units. Generalization is impossible up to a critical number of training examples that grows with the VC dimension. The asymptotic decrease of the generalization error epsilon(G) comes out independent of K and the VC bounds strongly overestimate epsilon(G). This shows that phase space dimension and VC dimension can play independent and different roles for the generalization process.
引用
收藏
页码:2113 / 2116
页数:4
相关论文
共 19 条
  • [1] STATISTICAL-MECHANICS OF A MULTILAYERED NEURAL NETWORK
    BARKAI, E
    HANSEL, D
    KANTER, I
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (18) : 2312 - 2315
  • [2] BROKEN SYMMETRIES IN MULTILAYERED PERCEPTRONS
    BARKAI, E
    HANSEL, D
    SOMPOLINSKY, H
    [J]. PHYSICAL REVIEW A, 1992, 45 (06): : 4146 - 4161
  • [3] What Size Net Gives Valid Generalization?
    Baum, Eric B.
    Haussler, David
    [J]. NEURAL COMPUTATION, 1989, 1 (01) : 151 - 160
  • [4] LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION
    BLUMER, A
    EHRENFEUCHT, A
    HAUSSLER, D
    WARMUTH, MK
    [J]. JOURNAL OF THE ACM, 1989, 36 (04) : 929 - 965
  • [5] COVER T, 1991, 4TH P ANN WORKSH COM
  • [6] GEOMETRICAL AND STATISTICAL PROPERTIES OF SYSTEMS OF LINEAR INEQUALITIES WITH APPLICATIONS IN PATTERN RECOGNITION
    COVER, TM
    [J]. IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03): : 326 - &
  • [7] STORAGE CAPACITY AND LEARNING ALGORITHMS FOR 2-LAYER NEURAL NETWORKS
    ENGEL, A
    KOHLER, HM
    TSCHEPKE, F
    VOLLMAYR, H
    ZIPPELIUS, A
    [J]. PHYSICAL REVIEW A, 1992, 45 (10): : 7590 - 7609
  • [8] SYSTEMS THAT CAN LEARN FROM EXAMPLES - REPLICA CALCULATION OF UNIFORM-CONVERGENCE BOUNDS FOR PERCEPTRONS
    ENGEL, A
    VANDENBROECK, C
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (11) : 1772 - 1775
  • [9] THE SPACE OF INTERACTIONS IN NEURAL NETWORK MODELS
    GARDNER, E
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (01): : 257 - 270
  • [10] MEMORIZATION WITHOUT GENERALIZATION IN A MULTILAYERED NEURAL NETWORK
    HANSEL, D
    MATO, G
    MEUNIER, C
    [J]. EUROPHYSICS LETTERS, 1992, 20 (05): : 471 - 476