SYSTEMS THAT CAN LEARN FROM EXAMPLES - REPLICA CALCULATION OF UNIFORM-CONVERGENCE BOUNDS FOR PERCEPTRONS

被引:12
作者
ENGEL, A [1 ]
VANDENBROECK, C [1 ]
机构
[1] LIMBURGS UNIV CENTRUM,B-3590 DIEPENBEEK,BELGIUM
关键词
D O I
10.1103/PhysRevLett.71.1772
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalization abilities of neural networks for inferring a rule on the basis of examples can be characterized by the convergence of the learning error to the generalization error with increasing size of the training set. Using the replica technique, we calculate the maximum difference between training and generalization error for the ensemble of all perceptrons trained by a teacher perceptron and the maximal generalization error for the perceptrons that have a training error equal to zero. The results axe compared with the rigorous bounds provided by the Vapnik-Chervonenkis theorem.
引用
收藏
页码:1772 / 1775
页数:4
相关论文
共 12 条
[1]   What Size Net Gives Valid Generalization? [J].
Baum, Eric B. ;
Haussler, David .
NEURAL COMPUTATION, 1989, 1 (01) :151-160
[2]   LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
JOURNAL OF THE ACM, 1989, 36 (04) :929-965
[3]  
ENGEL A, IN PRESS REPLICA CAL
[4]   OPTIMAL STORAGE OF A NEURAL NETWORK MODEL - A REPLICA SYMMETRY-BREAKING SOLUTION [J].
ERICHSEN, R ;
THEUMANN, WK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (02) :L61-L68
[5]   3 UNFINISHED WORKS ON THE OPTIMAL STORAGE CAPACITY OF NETWORKS [J].
GARDNER, E ;
DERRIDA, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (12) :1983-1994
[6]  
GYORGYI G, 1990, WORKSHOP NEURAL NETW
[7]  
MAJER P, 1993, IN PRESS PERCEPTRONS
[8]   VAPNIK-CHERVONENKIS BOUNDS FOR GENERALIZATION [J].
PARRONDO, JMR ;
VANDENBROECK, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (09) :2211-2223
[9]  
SHORAK GR, 1986, EMPIRICAL PROCESSES
[10]   A THEORY OF THE LEARNABLE [J].
VALIANT, LG .
COMMUNICATIONS OF THE ACM, 1984, 27 (11) :1134-1142