We present a theory which describes the influence of the Coulomb interaction on the optical spectra of quantum discs within the envelope function formalism. Starting from a non-local Elliott formula luminescence is traced back to two-particle wave functions and energies. They are solutions of the corresponding Schrodinger equation for an electron-hole pair under the influence of the Coulomb attraction and confinement potentials determined by the spatial variation of the band edges of the considered microstructure. We present a complete numerical solution of the two-particle problem for flat quantum dots, i.e. discs for which the size quantization in growth direction is much stronger than that in the xy-plane. We discuss two different situations, single discs with infinite and finite confinement potentials. Resulting theoretical lineshapes are compared with luminescence spectra obtained recently for quantum discs fabricated by laser-induced thermal cation interdiffusion in quantum-well structures.