NUMERICAL CONFORMAL MAPPING METHODS BASED ON FUNCTION CONJUGATION

被引:27
作者
GUTKNECHT, MH [1 ]
机构
[1] ETH ZENTRUM HG,SEMINAR ANGEW MATH,CH-8092 ZURICH,SWITZERLAND
关键词
D O I
10.1016/0377-0427(86)90130-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unifying treatment of methods for computing conformal maps from the unit disk onto a Jordan region is presented. Integral and integro-differential equations (involving the conjugation operator) for the boundary correspondence function are first derived using an arbitrary auxiliary function having certain properties. Then various iteration methods for solving these equations are described in this generality, so that the basic ideas become manifest. Specific methods are then treated as examples of the general theory. Among them are, in particular, the successive conjugation methods of Theodorsen, Melentiev and Kulisch, Timman, and Friberg, the projection method of Bergstroem, and the Newton methods of Vertgeim, Wegmann, and Huebner (which make use of the easy construction of the solutions of Riemann-Hilbert problems). Many of these methods are treated in greater generality than in the literature. The connections with the methods of Fornberg, Menikoff-Zemach, Chakravarthy-Anderson, and Challis-Burley are also outlined.
引用
收藏
页码:31 / 77
页数:47
相关论文
共 76 条
[1]  
BAUER F, 1975, SUPERCRITICAL WING S, V2
[2]  
Bergstrom H., 1958, MEM PUBL SCI SCI ART, P193
[3]  
BERNHARDSGRUTTE.R, 1983, THESIS ETH ZURICH
[4]  
BERRUT JP, 1984, Z ANGEW MATH PHYS, V35, P193, DOI 10.1007/BF00947932
[5]   BARYCENTRIC FORMULAS FOR TRIGONOMETRIC INTERPOLATION .1. [J].
BERRUT, JP .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1984, 35 (01) :91-105
[6]   A FREDHOLM INTEGRAL-EQUATION OF THE 2ND KIND FOR CONFORMAL MAPPING [J].
BERRUT, JP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (1-2) :99-110
[7]  
Brass H., 1982, NUMERICAL METHODS AP, V6, P43
[8]  
CHAKRAVARTHY S, 1979, MATH COMPUT, V33, P953, DOI 10.1090/S0025-5718-1979-0528049-6
[9]   A NUMERICAL-METHOD FOR CONFORMAL MAPPING [J].
CHALLIS, NV ;
BURLEY, DM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1982, 2 (02) :169-181
[10]  
Duren P., 1970, THEORY HPSPACES