OPTICAL REMOTE MEASUREMENT OF TOXIC GASES

被引:67
作者
GRANT, WB
KAGANN, RH
MCCLENNY, WA
机构
[1] MDA SCI,NORCROSS,GA 30071
[2] US EPA,ATMOSPHER RES & EXPOSURE ASSESSMENT LAB,RES TRIANGLE PK,NC 27711
来源
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION | 1992年 / 42卷 / 01期
关键词
D O I
10.1080/10473289.1992.10466965
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.
引用
收藏
页码:18 / 30
页数:13
相关论文
共 146 条
[81]  
Goldman A., Murcray F.J., Murcray F.H., Murcray D.G., Rinsland C.P., Measurements of several atmospheric gases above the South Pole in December 1986 from high-resolution 3- to 4-micron solar spectra, J. Geophys. Res., 93, (1988)
[82]  
Mankin W.G., Coffey M.T., Airborne measurements of stratospheric constituents over Antarctica in the austral spring 19871 Method and ozone observations, J. Geophys. Res., 11, 413, (1989)
[83]  
Herget W.F., Remote and cross-stack measurement of stack gas concentrations using a mobile FTIR system, Appl. Opt., 21, (1982)
[84]  
Carlson R.C., Hayden A.F., Telfair W.B., Remote observations of effluents from small building smokestacks using FTIR spectroscopy, Appl. Opt., 27, (1988)
[85]  
Busch K.W., Busch M.A., Tilotta D.C., Kubala S.W., Lam C.K.Y., Srinivasan R., Flame furnace infrared emission spectroscopy: New ways of playing with FIRE, Spectroscopy, 4, (1989)
[86]  
Platt U., Perner D., Direct measurements of atmospheric CH20, HN02, O3, N02, and S02 by differential optical absorption in the near UV, J. Geophys. Res., 85, (1980)
[87]  
Edner H., Sunesson A., Svanberg S., Uneus L., Wallin S., Differential optical absorption spectroscopy system used for atmospheric mercury monitoring, Appl. Opt, 25, (1986)
[88]  
Biermann H.W., Tuazon E.C., Winer A.M., Wallington T.J., Pitts J.N., Simultaneous absolute measurements of gaseous nitrogen species in urban ambient air by long pathlength infrared and ultraviolet-visible spectroscopy, Atmos. Environ., 22, (1988)
[89]  
Wahner A., Jakoubek R.O., Mount G.H., Ravishankara A.R., Schmeltekopf A.L., Remote sensing observations of daytime column N02 during the Airborne Antarctic Ozone Experiment, August 22 to October 2, 1987, J. Geophys. Res., 94, (1989)
[90]  
Dorn H.-P., Callies J., Platt U., Ehhalt D.H., Measurement of tropospheric OH concentrations by laser long-path absorption spectroscopy, Tellus, 40, (1988)