BREAKING OF SYMMETRY IN THE SADDLE-NODE HOPF-BIFURCATION

被引:35
作者
KIRK, V [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
关键词
D O I
10.1016/0375-9601(91)90814-O
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The normal form for the saddle-node Hopf bifurcation has an intrinsic symmetry which need not be present in nearby vector fields. Adding terms to the normal form which are incompatible with the symmetry leads to new bifurcation sequences which are organized by a pair of heteroclinic tangencies and by homoclinic bifurcations.
引用
收藏
页码:243 / 248
页数:6
相关论文
共 17 条
[1]  
ARNOLD V, 1982, GEOMETRICAL METHODS
[2]  
Broer H.W., 1984, ERGOD THEOR DYN SYST, V4, P509
[3]  
Chow S., 1982, METHOD BIFURCATION T, V251
[4]   PERTURBATION OF A HOPF-BIFURCATION BY AN EXTERNAL TIME-PERIODIC FORCING [J].
GAMBAUDO, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 57 (02) :172-199
[5]  
GASPARD P, 1987, THESIS U LIBRE BRUXE
[6]   LOCAL AND GLOBAL BEHAVIOR NEAR HOMOCLINIC ORBITS [J].
GLENDINNING, P ;
SPARROW, C .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) :645-696
[7]   MULTIPLE BIFURCATION PROBLEMS OF CODIMENSION-2 [J].
GUCKENHEIMER, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (01) :1-49
[8]  
Guckenheimer J., 1986, NONLINEAR OSCILLATIO
[9]  
Guckenheimer J., 1981, DYN SYST TURBUL WARW, P99
[10]   INFINITE PERIOD BIFURCATION AND GLOBAL BIFURCATION BRANCHES [J].
KEENER, JP .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 41 (01) :127-144