Cell-matrix interactions in dermal repair and scarring

被引:137
作者
Eckes, Beate [1 ]
Nischt, Roswitha [1 ]
Krieg, Thomas [1 ]
机构
[1] Univ Cologne, Dept Dermatol, Cologne, Germany
来源
FIBROGENESIS & TISSUE REPAIR | 2010年 / 3卷
关键词
D O I
10.1186/1755-1536-3-4
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Regulation of cellular functions during dermal repair following injury is complex and critically dependent on the interaction of cells with the surrounding extracellular matrix (ECM). The ECM comprises various families of macromolecules that form the structural scaffold of the tissue, but also carry distinct biological activities. After injury to the skin, the defect is filled by a provisional matrix that is invaded by inflammatory cells, sprouting blood vessels and fibroblasts. In a later phase, the wound contracts, the tissue is replaced by mature connective tissue produced by activated fibroblasts, and a scar is formed. All cells involved communicate directly with the ECM by integrins and other matrix receptors. These transmit signals and induce adaptive responses to the environment by the embedded cells. The ECM or proteolytic fragments of individual ECM constituents exert defined biological activities influencing cell survival, differentiation of myofibroblasts, ECM synthesis and turnover, wound angiogenesis and scar remodeling. Extensive crosstalk exists between ECM and growth factors, and between growth factors and integrins. ECM-cell contact also enables direct transmission of mechanical tension, which then modulates many activities of all cellular players. Understanding this complex interplay is important to provide a basis for designing effective wound therapy and for strategic interference with mechanisms that have gone out of control in fibrotic conditions.
引用
收藏
页数:11
相关论文
共 93 条
[1]   New developments in fibroblast and myofibroblast biology: Implications for fibrosis and scleroderma [J].
Abraham D.J. ;
Eckes B. ;
Rajkumar V. ;
Krieg T. .
Current Rheumatology Reports, 2007, 9 (2) :136-143
[2]   The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice [J].
Agah, A ;
Kyriakides, TR ;
Lawler, J ;
Bornstein, P .
AMERICAN JOURNAL OF PATHOLOGY, 2002, 161 (03) :831-839
[3]   Integrin αvβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1 [J].
Annes, JP ;
Chen, Y ;
Munger, JS ;
Rifkin, DB .
JOURNAL OF CELL BIOLOGY, 2004, 165 (05) :723-734
[4]   Thrombospondins 1 and 2 function as inhibitors of angiogenesis [J].
Armstrong, LC ;
Bornstein, P .
MATRIX BIOLOGY, 2003, 22 (01) :63-71
[5]   Linking integrin conformation to function [J].
Askari, Janet A. ;
Buckley, Patrick A. ;
Mould, A. Paul ;
Humphries, Martin J. .
JOURNAL OF CELL SCIENCE, 2009, 122 (02) :165-170
[6]   What mouse mutants teach us about extracellular matrix function [J].
Aszodi, A. ;
Legate, Kyle R. ;
Nakchbandi, I. ;
Faessler, R. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2006, 22 :591-621
[7]   A simplified laminin nomenclature [J].
Aumailley, M ;
Bruckner-Tuderman, L ;
Carter, WG ;
Deutzmann, R ;
Edgar, D ;
Ekblom, P ;
Engel, J ;
Engvall, E ;
Hohenester, E ;
Jones, JCR ;
Kleinman, HK ;
Marinkovich, MP ;
Martin, GR ;
Mayer, U ;
Meneguzzi, G ;
Miner, JH ;
Miyazaki, K ;
Patarroyo, M ;
Paulsson, M ;
Quaranta, V ;
Sanes, JR ;
Sasaki, T ;
Sekiguchi, K ;
Sorokin, LM ;
Talts, JF ;
Tryggvason, K ;
Uitto, J ;
Virtanen, I ;
von der Mark, K ;
Wewer, UM ;
Yamada, Y ;
Yurchenco, PD .
MATRIX BIOLOGY, 2005, 24 (05) :326-332
[8]   Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J].
Balaban, NQ ;
Schwarz, US ;
Riveline, D ;
Goichberg, P ;
Tzur, G ;
Sabanay, I ;
Mahalu, D ;
Safran, S ;
Bershadsky, A ;
Addadi, L ;
Geiger, B .
NATURE CELL BIOLOGY, 2001, 3 (05) :466-472
[9]   HOW DOES THE EXTRACELLULAR-MATRIX DIRECT GENE-EXPRESSION [J].
BISSELL, MJ ;
HALL, HG ;
PARRY, G .
JOURNAL OF THEORETICAL BIOLOGY, 1982, 99 (01) :31-68
[10]   Microarray analysis of blood microvessels from PDGF-RB and PDGF-Rβ mutant mice identifies novel markers for brain pericytes [J].
Bondjers, Cecilia ;
He, Liqun ;
Takemoto, Minoru ;
Norlin, Jenny ;
Asker, Noomi ;
Mats, Hellstro R. M. ;
Lindahl, Per ;
Betsholtz, Christer .
FASEB JOURNAL, 2006, 20 (10) :1703-+