Harmonic force fields, frequencies, and IR and Raman intensities of the intermolecular vibrational modes in the cyclic formamide dimer and the guanine-cytosine and adenine-thymine DNA base pairs were calculated using several ab initio methods, including Hartree-Fock, MP2 and gradient-corrected density functional theory (DFT), with various basis sets. A polar environment was modeled using the polarizable continuum model (SCRF). The effect of electron correlation upon calculated Raman intensities was investigated using DFT. The normal coordinate analysis was carried out in internal coordinates observing C-2h symmetry of the formamide dimer. These coordinates were also generalized for the DNA base pairs, allowing force constants, frequencies and intensities of the characteristic intermolecular vibrational modes to be compared among the H-bonded complexes studied. In addition, coordinates defined in this way are directly related to standard DNA interbase structural parameters as pseudodyad, tilt and propeller twist angles. Extensive coupling of the intramolecular wagging vibrations of the amino groups participating in H-bonding with the tilt and propeller twist vibrations was obtained for the lowest frequency normal modes.