A NOTE ON COMPUTING SIMPLE BIFURCATION POINTS

被引:5
作者
JANOVSKY, V
机构
关键词
D O I
10.1007/BF02243803
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:27 / 36
页数:10
相关论文
共 10 条
[1]  
Crandall M.G., 1971, J FUNCT ANAL, V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[2]  
Golubitsky M., 1985, SINGULARITIES GROUPS, DOI [10.1007/978-1-4612-5034-0, DOI 10.1007/978-1-4612-5034-0]
[3]   CHARACTERIZATION AND COMPUTATION OF GENERALIZED TURNING-POINTS [J].
GRIEWANK, A ;
REDDIEN, GW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (01) :176-185
[4]  
JANOVSKY V, 1987, NUMER FUNC ANAL OPT, V9, P1309
[5]  
JEPSON AD, 1984, NUMERICAL METHODS BI, P195
[6]   A QUADRATICALLY CONVERGENT METHOD FOR COMPUTING SIMPLE SINGULAR ROOTS AND ITS APPLICATION TO DETERMINING SIMPLE BIFURCATION POINTS [J].
MENZEL, R ;
PONISCH, G .
COMPUTING, 1984, 32 (02) :127-138
[7]  
MITTELMANN HD, 1980, BIFURCATION PROBLEMS, P1
[8]   THE NUMERICAL TREATMENT OF NON-TRIVIAL BIFURCATION POINTS [J].
MOORE, G .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1980, 2 (06) :441-472
[9]   COMPUTING SIMPLE BIFURCATION POINTS USING A MINIMALLY EXTENDED SYSTEM OF NONLINEAR EQUATIONS [J].
PONISCH, G .
COMPUTING, 1985, 35 (3-4) :277-294
[10]   NUMERICAL COMPUTATION OF BRANCH POINTS IN NON-LINEAR EQUATIONS [J].
SEYDEL, R .
NUMERISCHE MATHEMATIK, 1979, 33 (03) :339-352