INSTABILITY OF EINSTEIN-YANG-MILLS SOLITONS FOR ARBITRARY GAUGE GROUPS

被引:18
作者
BRODBECK, O
STRAUMANN, N
机构
[1] Institute for Theoretical Physics, University of Zürich, CH-8057 Zürich
关键词
D O I
10.1016/0370-2693(94)90199-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove that static, spherically symmetric, asymptotically flat, regular solutions of the Einstein-Yang-Mills equations are unstable for arbitrary gauge groups. The proof involves the following main steps. First, we show that the frequency spectrum of a class of radial perturbation is determined by a coupled system of radial ''Schrodinger equations''. Eigenstates with negative eigenvalues correspond to exponentially growing modes. Using the variational principle for the ground state it is then proven that there always exist unstable modes (at least for ''generic'' solitons). This conclusion is reached without explicit knowledge of the possible equilibrium solutions.
引用
收藏
页码:309 / 314
页数:6
相关论文
共 27 条
[11]  
HEUSLER M, 1993, HELV PHYS ACTA, V66, P614
[12]   SPHERICALLY SYMMETRIC STATIC SU(2) EINSTEIN-YANG-MILLS FIELDS [J].
KUNZLE, HP ;
MASOODULALAM, AKM .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (04) :928-935
[13]  
KUNZLE HP, ANAL STATIC SPHERICA
[14]  
LAVRELASHVILI G, 1903, MPIPH9355
[15]  
LAVRELASHVILI G, 1992, MPIPH92115 MAX PLANC
[16]   A CLASSICAL INSTABILITY OF REISSNER-NORDSTROM SOLUTIONS AND THE FATE OF MAGNETICALLY CHARGED BLACK-HOLES [J].
LEE, KY ;
NAIR, VP ;
WEINBERG, EJ .
PHYSICAL REVIEW LETTERS, 1992, 68 (08) :1100-1103
[17]   BLACK-HOLES IN MAGNETIC MONOPOLES [J].
LEE, KY ;
NAIR, VP ;
WEINBERG, EJ .
PHYSICAL REVIEW D, 1992, 45 (08) :2751-2761
[18]   CURVED-SPACE MAGNETIC MONOPOLES [J].
ORTIZ, ME .
PHYSICAL REVIEW D, 1992, 45 (08) :R2586-R2589
[19]   SMOOTH STATIC SOLUTIONS OF THE EINSTEIN YANG-MILLS EQUATIONS [J].
SMOLLER, JA ;
WASSERMAN, AG ;
YAU, ST ;
MCLEOD, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) :115-147
[20]   EXISTENCE OF INFINITELY-MANY SMOOTH, STATIC, GLOBAL-SOLUTIONS OF THE EINSTEIN-YANG-MILLS EQUATIONS [J].
SMOLLER, JA ;
WASSERMAN, AG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (02) :303-325