NONTRIVIAL SCATTERING OF LOCALIZED SOLITONS IN A (2+1)-DIMENSIONAL INTEGRABLE SYSTEM

被引:55
作者
WARD, RS
机构
[1] Department of Mathematical Sciences, University of Durham, Durham
关键词
D O I
10.1016/0375-9601(95)00782-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
One usually expects localized solitons in an integrable system to interact trivially. There is an integrable (2+1)-dimensional chiral equation which admits multi-soliton solutions with trivial dynamics. This paper describes how to generate explicit solutions representing nontrivial soliton interactions: in particular, a head-on collision of two solitons resulting in 90 degrees scattering.
引用
收藏
页码:203 / 208
页数:6
相关论文
共 24 条
[1]   YANG-MILLS EQUATIONS AS INVERSE SCATTERING PROBLEM [J].
BELAVIN, AA ;
ZAKHAROV, VE .
PHYSICS LETTERS B, 1978, 73 (01) :53-57
[2]  
Jaffe A., 1980, VORTICES MONOPOLES S
[3]   PI/N SCATTERING IN 2+1 DIMENSIONS [J].
KUDRYAVTSEV, A ;
PIETTE, B ;
ZAKRZEWSKI, WJ .
PHYSICS LETTERS A, 1993, 180 (1-2) :119-123
[4]   LOW-ENERGY SCATTERING OF SOLITONS IN THE CP1 MODEL [J].
LEESE, R .
NUCLEAR PHYSICS B, 1990, 344 (01) :33-72
[5]   SOLITON SCATTERINGS IN SOME RELATIVISTIC MODELS IN (2+1) DIMENSIONS [J].
LEESE, RA ;
PEYRARD, M ;
ZAKRZEWSKI, WJ .
NONLINEARITY, 1990, 3 (03) :773-807
[6]   3-DIMENSIONAL MODEL OF RELATIVISTIC-INVARIANT FIELD-THEORY, INTEGRABLE BY THE INVERSE SCATTERING TRANSFORM [J].
MANAKOV, SV ;
ZAKHAROV, VE .
LETTERS IN MATHEMATICAL PHYSICS, 1981, 5 (03) :247-253
[7]   2-DIMENSIONAL SOLITONS OF KADOMTSEV-PETVIASHVILI EQUATION AND THEIR INTERACTION [J].
MANAKOV, SV ;
ZAKHAROV, VE ;
BORDAG, LA ;
ITS, AR ;
MATVEEV, VB .
PHYSICS LETTERS A, 1977, 63 (03) :205-206
[8]   DYNAMICAL INTERACTIONS OF COSMIC STRINGS AND FLUX VORTICES IN SUPERCONDUCTORS [J].
MORIARTY, KJM ;
MYERS, E ;
REBBI, C .
PHYSICS LETTERS B, 1988, 207 (04) :411-418
[9]  
Piette B., 1992, International Journal of Modern Physics C (Physics and Computers), V3, P637, DOI 10.1142/S0129183192000415
[10]   TOWARDS A QUALITATIVE UNDERSTANDING OF THE SCATTERING OF TOPOLOGICAL DEFECTS [J].
ROSENZWEIG, C ;
SRIVASTAVA, AM .
PHYSICAL REVIEW D, 1991, 43 (12) :4029-4041