WHAT IS AND WHAT IS NOT STATED BY THE MAY-WIGNER THEOREM

被引:5
作者
ERDI, P [1 ]
TOTH, J [1 ]
机构
[1] HUNGARIAN ACAD SCI,TECH CHEM RES INST,H-1111 BUDAPEST,HUNGARY
关键词
D O I
10.1016/S0022-5193(05)80541-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:137 / 140
页数:4
相关论文
共 26 条
[1]  
[Anonymous], 1967, RANDOM MATRICES
[2]  
[Anonymous], SPECTRAL THEORY RAND
[3]  
ASHBY WR, 1952, DESIGN BRAIN
[4]   NECESSARY AND SUFFICIENT CONDITIONS FOR ALMOST SURE CONVERGENCE OF THE LARGEST EIGENVALUE OF A WIGNER MATRIX [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1988, 16 (04) :1729-1741
[5]   CONVERGENCE TO THE SEMICIRCLE LAW [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1988, 16 (02) :863-875
[6]   WHEN WILL A LARGE COMPLEX SYSTEM BE STABLE [J].
COHEN, JE ;
NEWMAN, CM .
JOURNAL OF THEORETICAL BIOLOGY, 1985, 113 (01) :153-156
[7]   STABILITY OF SYMMETRIC IDIOTYPIC NETWORKS - A CRITIQUE OF HOFFMANN ANALYSIS [J].
DEBOER, RJ ;
HOGEWEG, P .
BULLETIN OF MATHEMATICAL BIOLOGY, 1989, 51 (02) :217-222
[8]   COMPATIBILITY TESTS ON IMMUNOLOGICAL CONTROL LOOPS [J].
EISENFELD, J .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1987, 504 :132-150
[9]  
Erdi P, 1989, MATH MODELS CHEM REA
[10]   CONNECTANCE OF LARGE DYNAMIC (CYBERNETIC) SYSTEMS - CRITICAL VALUES FOR STABILITY [J].
GARDNER, MR ;
ASHBY, WR .
NATURE, 1970, 228 (5273) :784-&