ASYMPTOTIC DISSIPATION RATE IN TURBULENCE

被引:26
作者
GROSSMANN, S
机构
[1] Fachbereich Physik, Philipps-Universität, D-35032 Marburg
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 06期
关键词
D O I
10.1103/PhysRevE.51.6275
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Intermittency corrections δζ to the scaling behavior of the structure function in the inertial range imply an asymptotic decrease (Re-κ) of the dissipation rate divided by the energy input rate as a function of the Reynolds number with κδζ. Data analysis favors κ=0. It is the classical exponent ζ=2/3 that guarantees an asymptotically Re-independent dissipation-input ratio. Alternatively, intermittency may imply a nonuniversal viscous-inertial crossover in the structure function together with a Re-dependent amplitude b(Re), scaling with a small, negative exponent, as measured recently. © 1995 The American Physical Society.
引用
收藏
页码:6275 / 6277
页数:3
相关论文
共 36 条
[21]   INTERMITTENCY IN TURBULENCE [J].
LOHSE, D ;
GROSSMANN, S .
PHYSICA A, 1993, 194 (1-4) :519-531
[22]  
LVOV VS, 1995, PHYS REV LETT, V74, P3
[23]   INTERMITTENT TURBULENCE IN SELF-SIMILAR CASCADES - DIVERGENCE OF HIGH MOMENTS AND DIMENSION OF CARRIER [J].
MANDELBROT, BB .
JOURNAL OF FLUID MECHANICS, 1974, 62 (JAN23) :331-358
[24]   THE MULTIFRACTAL NATURE OF TURBULENT ENERGY-DISSIPATION [J].
MENEVEAU, C ;
SREENIVASAN, KR .
JOURNAL OF FLUID MECHANICS, 1991, 224 :429-484
[25]   SIMPLE MULTIFRACTAL CASCADE MODEL FOR FULLY-DEVELOPED TURBULENCE [J].
MENEVEAU, C ;
SREENIVASAN, KR .
PHYSICAL REVIEW LETTERS, 1987, 59 (13) :1424-1427
[26]  
Obukhov A. M., 1962, J FLUID MECH, V13, P77, DOI DOI 10.1017/S0022112062000506
[27]  
Obukoff A, 1941, CR ACAD SCI URSS, V32, P19
[28]  
ONSAGER L, 1945, PHYS REV, V68, P286
[29]   MEASUREMENTS OF THE KOLMOGOROV CONSTANT AND INTERMITTENCY EXPONENT AT VERY HIGH REYNOLDS-NUMBERS [J].
PRASKOVSKY, A ;
ONCLEY, S .
PHYSICS OF FLUIDS, 1994, 6 (09) :2886-2888
[30]   EXPERIMENTAL-VERIFICATION OF THE KOLMOGOROV REFINED SIMILARITY HYPOTHESIS [J].
PRASKOVSKY, AA .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (12) :2589-2591