DOUBLING OF EQUATIONS AND UNIVERSALITY IN MATRIX MODELS OF RANDOM SURFACES

被引:21
作者
BACHAS, C [1 ]
PETROPOULOS, PMS [1 ]
机构
[1] ECOLE POLYTECH,CTR PHYS THEORY,F-91128 PALAISEAU,FRANCE
关键词
D O I
10.1016/0370-2693(90)90910-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove that in the recently proposed scaling limit [E. Brézin and V.A. Kazakov, Phys. Lett. B 236 (1990) 144; M.R. Douglas and S. Shenker, Rutgers preprint RU-89/34 (October 1989); D.J. Gross and A.A. Migdal, Phys. Rev. Lett. 64 (1990) 127] in matrix models of random surfaces, the (singular piece of the) free energy is obtained from the sun of solutions of two non-linear differential equations: ε{lunate}±z=D(m) (f±g). These are identical and universal modulo the two arbitrary parameters ε{lunate}±, and the (common) normalization of the string coupling z. The doubling of equations implies a doubling of non-perturbative parameters. For even matrix-potentials one of the non-universal constants is fixed: ε{lunate}+=ε{lunate}-, and the scaling function g vanishes to all orders in the loop expansion. © 1990.
引用
收藏
页码:363 / 369
页数:7
相关论文
共 13 条
[1]  
ALVAREZ O, 1990, PARLPTHE9012 PREPR
[2]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[3]   NEW METHOD IN THE COMBINATORICS OF THE TOPOLOGICAL EXPANSION [J].
BESSIS, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (02) :147-163
[4]  
Bessis D., 1980, ADV APPL MATH, V1, P109, DOI 10.1016/0196-8858(80)90008-1
[5]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[6]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[7]   PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS [J].
DAVID, F .
NUCLEAR PHYSICS B, 1985, 257 (01) :45-58
[8]  
DOUGLAS M, 1989, RU8934 RUTG PREPR
[9]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[10]   NONPERTURBATIVE 2-DIMENSIONAL QUANTUM-GRAVITY [J].
GROSS, DJ ;
MIGDAL, AA .
PHYSICAL REVIEW LETTERS, 1990, 64 (02) :127-130