ZETA-FUNCTIONS AND TRANSFER OPERATORS FOR PIECEWISE MONOTONE TRANSFORMATIONS

被引:79
作者
BALADI, V
KELLER, G
机构
[1] UNIV HEIDELBERG,INST ANGEW MATH,W-6900 HEIDELBERG 1,GERMANY
[2] UNIV HEIDELBERG,SFB 123,W-6900 HEIDELBERG 1,GERMANY
关键词
D O I
10.1007/BF02104498
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given a piecewise monotone transformation T of the interval and a piecewise continuous complex weight function g of bounded variation, we prove that the Ruelle zeta function ζ(z) of (T, g) extends meromorphically to {{divides}z{divides}<θ-1} (where θ=lim ∥g°Tn-1...g°Tg∥∞1/n) and that z is a pole of ζ if and only if z-1 is an eigenvalue of the corresponding transfer operator L. We do not assume that L leaves a reference measure invariant. © 1990 Springer-Verlag.
引用
收藏
页码:459 / 477
页数:19
相关论文
共 23 条
[1]  
[Anonymous], 1966, PERTURBATION THEORY
[2]   Resonances for intermittent systems [J].
Baladi, V. ;
Eckmann, J-P ;
Ruelle, D. .
NONLINEARITY, 1989, 2 (01) :119-135
[3]  
Dunford N., 1957, LINEAR OPERATORS 1
[4]  
ECKMANN JP, 1988, RESONANCES DYNAMICAL
[5]  
HAYDN NTA, 1987, MEROMORPHIC EXTENSIO
[6]   ERGODIC PROPERTIES OF INVARIANT-MEASURES FOR PIECEWISE MONOTONIC TRANSFORMATIONS [J].
HOFBAUER, F ;
KELLER, G .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (01) :119-140
[7]   INTRINSIC ERGODICITY OF PIECEWISE MONOTONIC TRANSFORMATIONS WITH POSITIVE ENTROPY [J].
HOFBAUER, F .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (03) :213-237
[8]   PIECEWISE INVERTIBLE DYNAMIC-SYSTEMS [J].
HOFBAUER, F .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 72 (03) :359-386
[9]  
HOFBAUER F, 1984, J REINE ANGEW MATH, V352, P100
[10]  
Hofbauer F., 1985, ERGOD THEOR DYN SYST, V5, P237, DOI DOI 10.1017/S014338570000287X