SURFACE ROUGHENING WITH QUENCHED DISORDER IN HIGH DIMENSIONS - EXACT RESULTS FOR THE CAYLEY TREE

被引:10
作者
BULDYREV, SV
HAVLIN, S
KERTESZ, J
SADRLAHIJANY, R
SHEHTER, A
STANLEY, HE
机构
[1] BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215
[2] UNIV CAMBRIDGE,ISAAC NEWTON INST MATH SCI,CAMBRIDGE,ENGLAND
[3] TECH UNIV BUDAPEST,INST PHYS,H-1111 BUDAPEST,HUNGARY
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 01期
关键词
D O I
10.1103/PhysRevE.52.373
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Discrete models describing pinning of a growing self-affine interface due to geometrical hindrances can be mapped to the diode-resistor percolation problem in all dimensions. We present the solution of this percolation problem on the Cayley tree. We find that the order parameter P-infinity varies near the critical point p(c) as exp(-A/root p(c)-p), where p is the fraction of bonds occupied by diodes; This result suggests that the critical exponent beta(p) of P-infinity diverges for d --> infinity, and that there is no finite upper critical dimension. The exponent nu(parallel to) characterizing the parallel correlation length changes its value from nu(parallel to) = 3/4 below p(c) to nu(parallel to) = 1/4 above p(c). Other critical exponents of the diode-resistor problem on the Cayley tree are gamma = 0 and nu(perpendicular to) = 0, suggesting that nu(perpendicular to)/nu(parallel to) --> 0 when d --> infinity. Simulation results in finite dimensions 2 less than or equal to d less than or equal to 5 are also presented.
引用
收藏
页码:373 / 388
页数:16
相关论文
共 45 条
  • [1] NEW EXPONENT CHARACTERIZING THE EFFECT OF EVAPORATION ON IMBIBITION EXPERIMENTS
    AMARAL, LAN
    BARABASI, AL
    BULDYREV, SV
    HAVLIN, S
    STANLEY, HE
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (05) : 641 - 644
  • [2] UNIVERSALITY CLASSES FOR INTERFACE GROWTH WITH QUENCHED DISORDER
    AMARAL, LAN
    BARABASI, AL
    STANLEY, HE
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (01) : 62 - 65
  • [3] AVALANCHES AND THE DIRECTED PERCOLATION DEPINNING MODEL - EXPERIMENTS, SIMULATIONS, AND THEORY
    AMARAL, LAN
    BARABASI, AL
    BULDYREV, SV
    HARRINGTON, ST
    HAVLIN, S
    SADRLAHIJANY, R
    STANLEY, HE
    [J]. PHYSICAL REVIEW E, 1995, 51 (05) : 4655 - 4673
  • [4] [Anonymous], 1995, FRACTAL CONCEPTS SUR, DOI DOI 10.1017/CBO9780511599798
  • [5] [Anonymous], 2017, INTRO PERCOLATION TH, DOI DOI 10.1201/9781315274386
  • [6] Asmussen S., 1983, PROGR PROBABILITY ST, V3
  • [7] ANISOTROPIC PERCOLATION AND THE D-DIMENSIONAL SURFACE ROUGHENING PROBLEM
    BULDYREV, SV
    HAVLIN, S
    STANLEY, HE
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 200 (1-4) : 200 - 211
  • [8] ANOMALOUS INTERFACE ROUGHENING IN POROUS-MEDIA - EXPERIMENT AND MODEL
    BULDYREV, SV
    BARABASI, AL
    CASERTA, F
    HAVLIN, S
    STANLEY, HE
    VICSEK, T
    [J]. PHYSICAL REVIEW A, 1992, 45 (12): : R8313 - R8316
  • [9] ANOMALOUS INTERFACE ROUGHENING IN 3D POROUS-MEDIA - EXPERIMENT AND MODEL
    BULDYREV, SV
    BARABASI, AL
    HAVLIN, S
    KERTESZ, J
    STANLEY, HE
    XENIAS, HS
    [J]. PHYSICA A, 1992, 191 (1-4): : 220 - 226
  • [10] Bunde A., 1991, FRACTALS DISORDERED