HILBERT AND HADAMARD TRANSFORMS BY GENERALIZED CHEBYSHEV EXPANSION

被引:21
作者
HASEGAWA, T
TORII, T
机构
[1] FUKUI UNIV,FAC ENGN,DEPT INFORMAT SCI,FUKUI 910,JAPAN
[2] NAGOYA UNIV,FAC ENGN,DEPT INFORMAT ENGN,NAGOYA 46401,JAPAN
关键词
HADAMARD FINITE-PART INTEGRALS; INTEGRAL TRANSFORM; AUTOMATIC QUADRATURE; SINGULAR INTEGRAL; HILBERT TRANSFORM; CAUCHY PRINCIPAL VALUE INTEGRALS; CHEBYSHEV POLYNOMIAL; FFT;
D O I
10.1016/0377-0427(92)00003-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An automatic quadrature is presented for approximating Hadamard finite-part (fp) integrals of a smooth function, with a double pole singularity within the range of integration. The quadrature rule is derived from the differentiation of an approximation to a Cauchy principal value integral or the Hilbert transform. The approximation to the fp integral is represented as a function of the value of pole by using Chebyshev polynomials of the second kind. Since the error can be estimated independently of the value of pole, a set of integrals for a set of values of pole can be efficiently approximated to a required tolerance, with the same number of function evaluations. Numerical examples are also included to illustrate the performance of the methods.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 17 条
[1]  
BIALECKI B, 1990, MATH COMPUT, V55, P665, DOI 10.1090/S0025-5718-1990-1035926-3
[2]   A SINC QUADRATURE RULE FOR HADAMARD FINITE-PART INTEGRALS [J].
BIALECKI, B .
NUMERISCHE MATHEMATIK, 1990, 57 (03) :263-269
[3]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[4]  
ELLIOTT D, 1979, MATH COMPUT, V33, P301, DOI 10.1090/S0025-5718-1979-0514825-2
[5]   TRUNCATION ERRORS IN 2 CHEBYSHEV SERIES APPROXIMATIONS [J].
ELLIOTT, D .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :234-&
[6]   <bold>Statistical Model Order Reduction for Interconnect Circuits Considering Spatial Correlations</bold> [J].
Fan, Jeffrey ;
Mi, Ning ;
Tan, Sheldon X. -D. ;
Cai, Yici ;
Hong, Xianlong .
2007 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, VOLS 1-3, 2007, :1508-+
[7]   ERROR-BOUNDS FOR GAUSSIAN QUADRATURE OF ANALYTIC-FUNCTIONS [J].
GAUTSCHI, W ;
VARGA, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (06) :1170-1186
[8]   COMPUTING THE HILBERT TRANSFORM OF A JACOBI WEIGHT FUNCTION [J].
GAUTSCHI, W ;
WIMP, J .
BIT, 1987, 27 (02) :203-215
[9]   IMPLEMENTING CLENSHAW-CURTIS QUADRATURE .2. COMPUTING COSINE TRANSFORMATION [J].
GENTLEMAN, WM .
COMMUNICATIONS OF THE ACM, 1972, 15 (05) :343-+
[10]  
HASEGAWA T, 1990, MATH COMPUT, V54, P195, DOI 10.1090/S0025-5718-1990-0990599-0