SO(2,1) LIE-ALGEBRA AND THE JACOBI-MATRIX METHOD FOR SCATTERING

被引:15
作者
OJHA, PC
机构
来源
PHYSICAL REVIEW A | 1986年 / 34卷 / 02期
关键词
D O I
10.1103/PhysRevA.34.969
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:969 / 977
页数:9
相关论文
共 25 条
[11]  
GINNOCHIO JN, 1984, ANN PHYS-NEW YORK, V152, P203
[12]   GENERAL-FORM OF THE QUANTUM-DEFECT THEORY .2. [J].
GREENE, CH ;
RAU, ARP ;
FANO, U .
PHYSICAL REVIEW A, 1982, 26 (05) :2441-2459
[13]   NEW L2 APPROACH TO QUANTUM SCATTERING - THEORY [J].
HELLER, EJ ;
YAMANI, HA .
PHYSICAL REVIEW A, 1974, 9 (03) :1201-1208
[14]  
Jordan C., 1950, CALCULUS FINITE DIFF
[15]  
LINDBLAD G, 1970, ANN I H POINCARE A, V13, P27
[16]  
Morse PM, 1953, METHODS THEORETICAL
[17]   PHENOMENA EXHIBITING STRONG FIELD MIXING [J].
RAU, ARP .
PHYSICAL REVIEW A, 1977, 16 (02) :613-617
[18]   L2 DISCRETIZATION OF ATOMIC AND MOLECULAR ELECTRONIC CONTINUA - MOMENT, QUADRATURE AND J-MATRIX TECHNIQUES [J].
REINHARDT, WP .
COMPUTER PHYSICS COMMUNICATIONS, 1979, 17 (1-2) :1-21
[19]   QUANTUM DEFECT THEORY [J].
SEATON, MJ .
REPORTS ON PROGRESS IN PHYSICS, 1983, 46 (02) :167-257
[20]  
SLATER LJ, 1966, GENERALIZED HYPERGEO, P48